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Abstract

Approximate solutions for the spinup of a near axisymmetric dual-spin gy-
rostat are derived using the straightforward expansion method and the methoc of
multiple scales. Two method of multiple scale solutions are presented. The first
is derived using cartesian coordinates while the second is derived using cylindrical
coordinates. The multiple scales solutions are compared to numerically integrated
results for oblate and prolate configurations. A comparison for flat spin recovery is
also accomplished. Excellent results are obtained for oblate configurations. Trajec-
tory separatrix crossings hindered the results for prolate configurations and flat spin

recoveries.
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AN APPROXIMATE SOLUTION FOR THE SPINUP DYNAMICS
OF NEAR AXISYMMETRIC AXIAL GYROSTATS USING THE
METHOD OF MULTIPLE SCALES

1. Introduction

In 1958, the United States of America launched Explorer I into orbit as its
answer to the Soviet Unions’ Sputnik. The great space race between the two nations
began, and unfortunately, the United States’ entry suffered a serious flaw. Explorer
I was shaped like a missile and was designed to rotate about its minimum moment
of inertia axis. Ninety minutes after insertion into its orbit, Explorer I was tumbling
end-over-end and the engineers at the Jet Propulsion Laboratory did not know why
(9:129). In the following years, U.S. engineers learned a great deal about rotational

dynamics.

By 1960, engineers accepted the idea that internal energy dissipation, caused
by spacecraft flexibility, violated the assumptions of the classical analyses of Euler.
The result was the belief that all spin stabilized satellites must be shaped like “tuna
cans” so that spin stabilization could be achieved through spin about the maximum
moment of inertia axis. As satellite design progressed, the idea of an inertial platform
became increasingly attractive. With such a platform, sensors could be continuously
pointed at a source rather than rely on scanned coverage. The first satellite to employ
such a platform was launched in 1962 and was called the Orbiting Solar Observatory,
0S0-1(13:761). This satellite was still designed to spin about its maximum moment

of inertia axis, but the concept of an inertial platform was flown (9:131).

As satellites progressed even further, however, they were designed to accom-

plish more tasks and as a result, became bigger. The constraint to such large satellites
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was the size of the payload shroud used to protect them during assent to orbit. The
aerodynamics of rocket design dictated a long slender shape which conflicted with
the short squat shape required for spin stability. The lessons of Explorer I, however,
were firmly entrenched in the minds of our satellite designers. Surprisingly, Mr.
Vernon Landon, an employee at RCA, deduced the instability about the minimum
moment of inertia axis due to energy dissipation as early as 1957. Further, by 1962,
Mr. Landon knew that stable spin about the minimum moment of inertia axis was
possible if enough angular momentum was stored in a rigid rotor aligned with the
spin axis of the spacecraft (9:130). Unfortunately, his efforts went unrecognized for

many years.

In 1965, Mr. Tony Iorillo of Hughes Aircraft Company, found that by putting
a damper on the platform section of a dual-spin spacecraft, spin stabilization for
spacecraft of any inertia distribution was possible. By using an energy sink analysis,
it was shown that if the energy dissipation rate of the platform is much greater than
the energy dissipation rate of the rotor, spin stabilization could be achieved for a

spacecraft spinning about its minor moment of inertia axis (14:151-154).

The advantages of dual-spin spacecraft are many and it is used on many of
todays satellites. There is an important problem in the dynamics of dual-spin space-
craft to which this thesis addresses itself. That problem is concerned with the spinup
of the rotor such that spin stability can be achieved. The spinup maneuver can occur
at two different instances in the spacecrafts lifespan. The first is when a satellite is
initially deployed. As the satellite is inserted into its orbit, the rotor and platform
are both spinning at the same rate and their relative angular velocity is zero. In order
to give the platf -rm an essentially inertial reference, a torque motor is incorporated
to spinup the rotor and thereafter maintain the desired relative rotation rate. The
initial spinup causes the angular momentum of the platform to be transferred to
the rotor which, in turn, causes the platform to despin. The second instance occurs

if the torque motor used to maintain a specified spin rate between the rotor and
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platform fails. Internal friction will eventually reduce the relative spin rate between
the rotor and platform to zero. Continued energy dissipation will cause the satellite
to seek its maximum moment of inertia axis. Should failure of the torque motor be
corrected, the relative spin rate between the rotor and platform and the satellite’s

attitude could be reestablished by spinning up the rotor.

1.1 Problem Statement

The objective of this thesis is to derive an approximate solution to the equa-
tions of motion that describe the spinup dynamics of near axisymmetric dual-spin
satellites. Specifically, the method of multiple scales perturbation technique will be
used to develop these approximate solutions valid for dual-spin satellites with small
differences in transverse inertias being spun up with a non-zero axial torque. There
are several benefits associated with the development of approximate solutions. The
first is the reduction of computational time. If the attitude of a spacecraft is desired
for a particular time in the future, the equations of motion must be integrated from
the initial state to the time in question. If an approximate solution is available, the
time need only be placed in the equation to determine the future attitude. Second,
approximate solutions provide valuable insight into the dynamics of a rotating body
as its trajectory passes through a separatrix. Third, with an increased level of under-
standing of the spinup dynamics attained, weight sivings for future spacecraft may
be realized since torque values for spinup motors can be more accurately predicted.
Finally, development of approximate solution techniques further enhance the body

of knowledge available for the design of future space systems (3:860).

1.2 Related Work

Four different groups of researchers have completed work in approximate so-
lutions that is most closely related to the type of dual-spin satellite modelled in
this thesis. Sen and Bainum (13) derived an approximate solution for the spinup

of an oblate satellite. Using a perturbation technique, they developed dimensional
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equations for a near axisymmetric gyrostat model of the Small Astronomy Satellite
(SAS-A). Their results only included the transverse components of angular momen-
tum. While they were able to capture the amplitude of the system, they were not

able to account for the increase in frequency during the spinup maneuver.

The work of Gebman and Mingori (3) was completed in 1976 and was concerned
with an approximate solution for a flat spin recovery. Their solution incorporated
the use of a multiple scales method in which their initial conditions were fixed at the
exact equilibrium point for flat spin recovery. Their solution proved satisfactory for

this one particular case.

A method by which the spinup dynamics of a dual-spin satellite in an external
torque free environment could be analyzed has recently been developed by Hall (5).
By plotting the energy of the satellite versus the angular momentum of the rotor, he
was able to capture the dynamics of three distinct spinup problems. The first two
problems were oblate and prolate spinup which are associated with the initial satellite
deployment. The terms “oblate” and “prolate” refer to the inertia distribution of
the satellite. The third problem was termed transverse spinup and is associated with
the satellite attitude recovery problem should the torque motor fail. This problem is
commonly referred to as flat spin recovery. Hall took the four first order differential
equations that describe the dynamics of a rigid dual-spin satellite and reduced them
to a single first-order non-autonomous ordinary differential equation for the slow
evolution of kinetic energy during spinup. This reduction was made possible by
using the conservation of angular momentum and the method of averaging. Previous
studies of spin-up dynamics had been restricted to particular classes of gyrostats or
particular regions of phase space. Hall, however, provides a unified treatment for
all gyrostats with his discovery of a symmetry relating oblate and prolate gyrostats
which reduce the number of cases to be investigated. A significant difference in
notation between this thesis and Hall’s work is in the use of the variable “c”. Hall

used “c” to denote the non-dimensional torque applied by the platform on the rotor.
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This thesis used the variable “g” to denote this value while “c” is used as the small

parameter in the perturbation methods.

Kinney (8) linearized the equations of motion for the spinup of an ideal ax-
ial gyrostat about the oblate and prolate equilibrium points. He then applied the
WKB (Wentzel, Krammers, and Brillouin) approximation method for the linearized
equations of motion. Because the equations of motion were linearized about the
equilibrium points, his approximate solutions were forced to stay very close to these
points. While obtaining good results for oblate spinup, the WKB solution failed for
prolate spinup due to its inherent inability to adapt to the bifurcations associated

with the prolate equilibrium point.

1.3 Outline of Thests

The thesis begins with a review of the dynamics of a dual-spin spacecraft.
Chapter 2 first develops the equations of motion for the spinup maneuver and then
transforms them to a non-dimensional system of equations. The boundary conditions
for the spinup maneuver are discussed and a numerical value for the end of spinup
is derived. In order to provide a treatment for all types of dual-spin spacecraft, the
dynamical shape of the spacecraft in terms of its non-dimensional moments of inertia
is discussed. Finally, a review of the three types of spinup problems (oblate, prolate,

and transverse) is presented.

Chapter 3 employs the straightforward expansion method to the equations of
motion. While this method fails in general, it provides insight for the development of
an approximate solution using the method of multiple scales. Results for an oblate

spacecraft are presented to show the inadequacy of this expansion.

Chapter 4 employs the method of multiple scales to derive another approximate
solution. Excellent results are obtained for oblate spacecraft. Results for prolate

spacecraft and transverse spinup are also presented and discussed.
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Chapter 5 also employs the method of multiple scales, but, applies the method
to the equations of motion after they are transformed to cylindrical coordinates.
Comparison between the two multiple scales approximate solutions are presented for

the three spinup problems.
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II. Dynamics of the Dual-Spin Spacecraft

The spacecraft to be modelled is as shown in Fig 2.1 (5:26). The model con-
sists of a rigid body free to rotate in space. The relative motion of the platform
(P) and rotor (R), however, is constrained to rotation about a rigid frictionless
shaft aligned with a principal axis (¢;). This model accommodates an asymmetric
spacecraft through the assumption that the platform is asymmetric, but the rotor
is axisymmetric about a principal axis which is also the relative rotation axis. This
assumption leads to a constant moment of inertia tensor for the modelled spacecraft,
and therefore, by definition is also known as a gyrostat. The vector h represents the
total angular momentum of the gyrostat. Because the assumption of no external
torques is made, the magnitude of the angular momentum vector must be conserved

and the angular momentum vector is fixed in an inertial reference frame.
h? = h? 4+ h2 + h} = constant (2.1)

In order to derive the equations of motion of the gyrostat, the angular velocities,

torque, moments of inertia, and angular momentum of the rotor and platform must
first be defined (5:28).

e hy = Lu + I,w, = angular momentum of P + R about &,
o h; = Lw; = angular momentum of P + R about é;, i=2,3
® h, = I(w, + w1) = angular momentum of R about ¢,

e I; = moment of inertia of P 4+ R about é;,i = 1,2,3

e ], = axial moment of inertia of R about é;

o [, = I, — I, = axial moment of inertia of P about €,

¢ w; = angular velocity of P about ¢,, i=1,2,3

e w, = angular velocity of R about é, relative to P
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Figure 2.1. Model of axial gyrostat. The asymmetric platform is denoted as P
while the axisymmetric rotor is denoted as R. The body frame F, is
aligned with the principle axis and rotates relative to the inertial frame
F;. The total angular momentum vector is denoted as h and is constant
in direction and magnitude.




® g, = torque applied by P on R about ¢,

e é; = principal axesof P + R, i = 1,23

o { = time
Note that the angular velocity vector is relative to an inertial reference frame and
that the transverse moments of inertia of the rotor are embodied in I; and I5. A
motor is incorporated in the gyrostat for the spinup maneuver to provide torque to
both bodies. While the transverse torques between the two bodies are present, they
are not required for the equations of motion. As noted, A, is the angular momentum
of the R about é;. Therefore the time derivative of this angular momentum is the
axial torque applied by the platform on the rotor.

dh,
dt' = 4Ga (2’2)

The angular momentum components of the gyrostat may now be written.

h=hp +hp (2.3)
hy L 0 0 wi I, 00| | w
h=|a|=|0 L 0 we |+]0 00 0 (2.4)
hs 0 0 L |ws 000 0
Lw, + Lw,
h= Igl.dg (2'5)
Izws

In order to get the time rate of change of the angular momentum of the gyrostat in
an inertial frame, the derivative of the angular momentum vector is taken via the

standard convention.

ided
E-h = Ii'-h +a% x h (2:6)




This yields
'_ izl — w3ha + wahs 0
Edfh = ilz +wshy ~whs | =] 0 (2.7)
hs — wahy + wihy 0

The derivative of the angular momentum vector is set equal to zero since the gyrostat
is modelled in an external torque free environment. From Eq. 2.5 we see k;, =
Liuw + Iw, which can be solved for w, to yield

hl" s
w1=—"—Il—'—

(2.8)
By using the moment of inertia of P about é, (I, = I, — I,) and the angular
momentum of R about é; (ks = I,(w, + w1)) Eq. 2.8 can be rearranged to yield

_hi—h,
=7

w1

(2.9)

The components of f;h can now be written in terms of angular momentum and

moments of inertia. From Eq. 2.7

°d
;ﬁhx = w3hy — wahs3
= wslwy — walzws
= (12 - Is)waws
finally
d_(I— L)
dfhl =IT hahs (2.10)
Similarly
°d
ﬁhz = —W3h1 + w1h3 (211)
using Eq. 2.9
°d hy — hq
Ifhz = —w3h; + ( : I ) ha (2.12)
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°d L-1, h,
ha= [Iu m-—%h3 (2.13)

IP
and
d‘f.hs = Wth wlhg (214)
°d IL-1, h,
—ha= [ AL 1;] ha (2.15)

Equations 2.2, 2.10, 2.13 and 2.15 represent the complete system of equations that
describe the spinup dynamics of the gyrostat. The cone angle (also known as the
nutation angle) is the angle between the angular momentum vector and the symmetry

axis of the gyrostat. In terms of Euler angles it is defined as (5:28)

afh-é afh
_ 1 _ 1{Mm
n = cos ( 5 ) = cos ( A ) (2.16)

2.1 Dimensionless Equations

In order to simplify the equations of motion further, the variables are non-
dimensionalized using the following transformations first developed by Guelman

(4:111) and refined by Hall (5:30).

® x; = h;/h - dimensionless component of angular momentum, : = 1,2,3
® 4 = hy/h - dimensionless angular momentum of R about ¢,
e t = hi/I, - dimensionless time
g = (9alp)/4? - dimensionless torque applied by the P to the R about ¢,

The non-dimensional equations will now be with respect to the non-dimensional
time ¢t and denoted as () = d()/dt. Further, the moments of inertia are non-
dimensionalized using the following definition by Hall (5:30)

i;=1-

;,1_123 (2.17)
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Simple substitution into Eqs. 2.10 2.13 and 2.15 yields the following set of dimen-

sionless equations on which the rest of the analysis follows

X1 = (82 —i3)x3x3 (2.18)
x2 = (iaXy — p)x3 (2.19)
x3 = —(iax1 — p)x; (2.20)
po=9 (2.21)

Note that there has been no change in the angular momentum integral (Eq. 2.1)

which now becomes

xX+x2+xi=1 (2.22)

Also note that the cone angle is reduced to
7 = cos~(x;) (2.23)

2.2 SpinUp Boundary Conditions

The spinup problem in this analysis usually begins with the gyrostat operating
such that the relative velocity between the platform and rotor is close to zero. This
would be the case in both the initial satellite deployment or a satellite that has
degraded to a flat spin for an extended period of time. The spinup maneuver begins
when a small constant torque g is applied to increase the angular momentum of the
rotor to a value near y = 1. The value of u = 1 is apparent if you recognize that for
an inertially fixed platform, w; (angular velocity of P about €;) = 0. Substituting

p into Eq. 2.9 yields
o = L=H)
Ip/h

If wy =0 then g =1 for the spun up condition (5:58-59).

(2.24)
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Since i = g implies 4 = gt + o, the lower boundary for u is not necessarily 0.
Having po # 0 implies that the rotor is spinning relative to the platform with some
initial angular velocity condition. This only affects the amount of time required to
complete the spinup maneuver since

_ Bfinal — o _ 1 - po

tinal = 2.25
final p p (2.25)

2.8 The Dynamical Shape of the Gyrostat

(5:33-35) It can be seen from Eq. 2.17 that the three dimensionless inertia
parameters retain their relative values with respect to the original moments of inertia.
Mathematically,

L>L&1;>4; ,k=1,2,3 (2.26)

Further, the sign of 4; and i3 are determined by the relationship between I, and I;

or 13.

Ip>Ik — i/,<0
L<ly < 4>0

k=23

Since only 1, and 3 appear in Eqs. 2.18 - 2.21, these parameters define the dynamical
shape of the gyrostat. Using the standard definitions for satellite shape, the following

possibilities are available.

e if i3 < i3 < 0 = Oblate gyrostat
o if i3 > i3 > 0 = Prolate gyrostat
e if i3 > 0 > i3 = Intermediate gyrostat

The assumption is made that ¢; > i3. The other non-dimensional inertia parameter

simplifies to i, = I,/I; which is the ratio of the axial inertia of R to the axial inertia
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[

Figure 2.2. Allowable values of i; and i3 for a gyrostat with a rod shaped rotor
(31 = 0). Oblate gyrostats have negative values of i; and i3. Prolate
gyrostats have positive values of i and i3.

of P + R. This implies that 0 < i; < 1 which has the limiting physical shape of a
rod shaped rotor (i, = 0) to a rod shaped platform (i; = 1). The effect of i; on the
gyrostats dynamics are described in Hall’s work (5:33-35). He shows that by using
the triangle inequalities for the moments of inertia, 7, limits the physically possible

values of i; and i3 through the following relations.

(1 =24 +41dg)/(i2 —41) ()
13 = (2ig—i1i2—1)/(i2-—i1) (II)
(I =ad2)/(2—41 —142) (III)

A graphical presentation is shown in Figure 2.2 for a gyrostat that has ; = 0. In
accordance with the relations given above, oblate gyrostats will have negative i; and
i3 values while prolate gyrostats will have positive values of ¢; and 3. Intermediate

gyrostats will not be discussed in this thesis.




Hall also demonstrates that i; impacts the dynamics of the gyrostat through
its effect on the initial conditions. Note that the definition of oblate and prolate do
not involve i;. Because spinup typically begins with the platform and rotor spinning

as a single rigid body (w, = 0), the following relations hold.

hy = L+ lw, = Lw

he = Lw,+ Lw = Luw
Since
h Lw
7, = —hl = ‘T‘ (2.27)
and
h I,wl
b=t = (2.28)
using Eq. 2.27
Lh I .
= XI—lxl = Tlxl = 11Xy (229)

This initial spin can be about either the major or minor moment of inertia axis of
the gyrostat. For example, an all spun prolate spacecraft can be represented by two

possibilities (6:644).

e ifi; > i, > i3 > 0 then é, is the major axis and the stateisx; = 1,x; = x3 =0,

p=1

e if 23 > 23 > 23 > 0 then é; is the major axis and the state is x; = 1,

X3 = x3 = g = 0. This is commonly referred to as a flat spin condition.

The reader is referred to reference (5) for an in-depth discussion of the dimensionless

parameters.




2.4 Spinup Problems

To describe the nature of the different spinup problems, an understanding of
the system dynamics when g = 0 is first required. As can be seen from Eq. 2.21,
setting ¢ = 0 implies that the angular momentum of R about ¢, is a constant value.
Because the angular momentum first integral cannot be violated in a torque free
environment, the motion of the gyrostat is confined to one dimensional curves on
the momentum sphere defined by Eq. 2.22. Hall (5:Chapter 5) demonstrated that
when g = 0, Eqs. 2.18-2.20 reduce to a single integral which is solved using Jacobi’s
elliptic functions. In Hall's development of the reduction of quadrature for ¢ = 0,
he derives an energy like constant, y, which defines lines of constant “energy” on
the momentum sphere (5:39-42). The “energy” term, y, represents a functional
combination of the three integrals of motion when ¢ = 0. The three integrals are

total angular momentum, axial angular momentum, and rotational kinetic energy.
ly,. .. . o
y=3 {(22 +13)z2 — (i3 — i3)(23 — 23) — dpzy — (i + 13)} (2.30)

Because this constant is only valid for 4 = constant, the momentum sphere has a
different topology for each value of u. Figure 2.3 depicts a progression of momentum
spheres for a near axisymmetric gyrostat as u increases. This is essentially a graphical
presentation of a spinup maneuver for either an oblate or prolate gyrostat. In Section
2.3, we discussed the non-dimensional moments of inertia i; and 3. If both these
values are negative, the gyrostat is oblate and its energy for a particular value of u
is associated with a polhode that lies in the upper (northern) half of the momentum
sphere (note: “upper” and “lower” are in reference to the spheres shown in Figure
2.3 regardless of the coordinate axis). If ¢, and i3 are both positive, the gyrostat is
prolate and its energy is associated with polhodes that lie in the lower (southern)
half of the momentum sphere. Note that the number of equilibrium points on the
momentum sphere vary as the values of u change. Hall’s work demonstrates that

for p less than the smaller of [¢2| or [i3], there are six equilibrium points. The six
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Table 2.1. Equilibrium Points
Equilibrium Pts Validity
(£1,0,0) Vg

(Oiﬁ— m)
LLi‘/l‘ ﬂ/zz )

equilibrium points are listed in Table 2.1 and were first published in Guelman’s work

(4:112).

g=0

=0

The points O, and P, in Figure 2.3 are centers for an oblate and prolate
gyrostat respectively. The two points U, indicate the unstable equilibria for unstable
flat spin motion. The two points labeled F, located within the unstable flat spin
separatrix correspond to the centers of stable flat spin motion. As u increases,
the separatrices associated with flat spin motion migrate to the prolate equilibrium
point. At u equal to the smaller of |i;| or |i3|, the two saddles of the unstable flat
spin motion converge to form a single saddle at the south pole and, as a result,
with the smaller of |¢3| or |i3] < p < the larger of |iz| or |i3|, there are only four
equilibrium points. Finally, at u equal to the larger of |i3| or [i3], the two stable
flat spin centers converge with the saddle at the south pole to form a center. For
p greater than the larger of |i2| or |i3| only two equilibrium points remain and no
further bifurcations occur. It is important not to visualize the polhodes as circular
disks. The momentum sphere contains separatrices which affect all the polhodes
on the sphere. A more realistic concept of what is seen as circles is a surface of a

hyperboloid or a “Pringles potato chip”.

Unfortunately, the spinup problem involves the case when g # 0. When g # 0,
there are no polhodes defined by Eq. 2.30 since g is no longer constant. Further, the

separatrices which separate the different kinds of motion in a g = 0 system no longer
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Figure 2.3. Momentum spheres for a near axisymmetric gyrostat with a one percent
difference in transverse inertias and a range of u
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separate different regions of phase space. It is entirely possible for a trajectory to
cross the “instantaneous” separatrix as u is increasing. The term “instantaneous”
is used since at each value of u, there exists a range of energy values which can be
plotted as instantaneous polhodes on the momentum sphere. One way to envision
the dynamics is to think of the trajectory moving on the momentum sphere as
the instantaneous separatrices migrate to P,. An important conceptual point is to
realize that for near axisymmetric gyrostats, the trajectory will not move towards
the oblate or prolate equilibrium points. In fact, without a significant asymmetry
in the transverse moments of inertia, the x, component of angular momentum will
stay at approximately the same value. This implies that the cone angle at the end
of spinup is not going to vary significantly from . initial value.

As mentioned earlier, trajectories for oblate gyrostats will begin in the northern
hemisphere. The instantaneous separatrices on the momentum sphere will migrate
toward the south pole, so the oblate trajectory will not experience any separatrix
crossings. Prolate gyrostats begin spinup in the southern hemisphere. As the spinup
progresses, the trajectory is influenced by the instantaneous separatrices. Specifi-
cally, as the trajectory crosses an instantaneous separatrix, its frequency decreases
until the second bifurcation occurs. At this point, the trajectory paths look similar
to those present before the separatrix crossing and the frequency should increase
again. Transverse spinup of a prolate gyrostat begins spinup near one of the stable
flat spin equilibrium points. In order to keep the trajectory near the equilibrium
point, the gyrostat must have an extremely small torque or substantial asymme-
try. Since this thesis deals with near axisymmetric gyrostats, the second option is
not considered. If the gyrostat has too much torque, the trajectory will cross the

instantaneous c-:paratrix. Obviously, with a higher torque, this will happen quicker.

Motion near a separatrix is highly non-linear and, therefore, difficult to approx-
imate. As a result, we expect to experience some difficulties associated with prolate

and transverse spinup. As mentioned above, the problem of defining exactly where
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the instantaneous separatrix crossing occurs is extremely difficult. The reason is the
constantly changing nature of the instantaneous separatrices as the spinup maneuver
progresses. To define the separatrix crossing, the rate at which the instantaneous
separatrices are moving on the momentum sphere along with the exact position and
rate of movement of the angular momentum vector on the momentum sphere would
have to be known. Given the extremely non-linear nature of the motion in this region
along with an infinite number of initial conditions; the difficulty of the problem can

be appreciated.

2.5 Summary

In this chapter, we have derived the non-dimensional equations of motion that
describe the spinup of an axial gyrostat. The spinup boundary conditions have been
specified and a discussion of the three types of spinup problems in terms of their
trajectories’ relationship to the nonlinear effects of separatrices has been presented.
In the next chapter, the straightforward expansion method is used to outline the

general flow of an approximate solution for the governing equations.
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III. The Straightforward Ezpansion

We begin the analysis using the straightforward expansion method as a pos-
sible perturbation technique. The rationale behind using this approach is twofold.
First, by employing the straightforward expansion method, a general flow of the
solution using perturbation theory is presented. Second, the method is employed to
determine if valid solutions can be obtained for larger torque values. A well known
limitation of the straightforward expansion method is that it produces terms which
are proportional to the independent variable, t. These terms, commonly referred to
as secular terms, invalidate an approximate solution at large values of the indepen-
dent variable because they grow without bound. However, for larger values of g,
Eq. 2.25 shows that the amount of time required for the spinup problem is reduced.

We wish to derive an approximate solution for the spinup of a near axisym-

metric gyrostat which have the following equations of motion (Eqs. 2.18-2.21).

X1 = (i3 —i3)Xax3
X2 = (i3x) — p)xa
X3 = —(ile - ﬂ)xz
p=9

This system is subject to the following initial conditions.

i XI(O) ]
_ XQ(O)
x(0) = ) (3.1)

| u(0) |




The small parameter which we use in the approximation is the difference in transverse
inertias
i3 — 13 = ae (3.2)
where a is O(1). We begin with the assumption that each component of angular
momentum has a solution of the form
Xi = Tio+ €z + 2 zia + O(%); 1 =1,2,3 (3.3)
Further, the time derivative of each component takes the form

Xi = £io + €k + €22 + O(%); i = 1,2,3 (3.4)

Note that x; refers to the total component of angular momentum while z;; refers
to the terms which make up the solution for x;. Substituting Eqs. 3.3 and 3.4 into
Eqs. 2.18-2.20 and collecting terms of ¢ yields the following system of equations.

O(l): &0 = 0 (3.5)
g0 = —(p—13T10)Z30 (3.6)
Zzp = (p—1a%10)Z20 3.7
O(e): 11 = a T3 (3.8)
En = —(p —i3T10)za1 + 13211230 (3.9)
2y = (p-— i3zlo)$2l — aZ10%20 — 13T11Z20 (3-10)

Notice the important contribution of selecting the difference in transverse in-
ertias as the small parameter. Equations 2.18-2.20 are transformed from a set of
non-linear differential equations to systems of linear differential equations in each

power of €. Solving the O(1) system of equations first, we immediately see that
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Z10 = constant, leaving a set of coupled linear differential equations of the form

X = A(t)X (3.11)
where
0 i
At) = _ (u = dsz10) (3.12)
(B = i3Z10) 0
p=gt+ uo (3.13)
This system has the solution
X = &(t,0)X, (3.14)

where X, are the initial conditions and ® is the state transition matrix. While
coupled systems of differential equations with time varying coefficients are typically
difficult to solve, this system of equations contains a simple property which permits

a simple solution. We make use of the following relation (7:p. 600)
t
If A(t:)A(ts) = A(t:)A(t1); then &(t,7) = exp / A(o)do (3.15)

The A matrix in this system of equations satisfies the commutative property and so

the integration is easily done:

t ) t3 .
‘/0 (ga + po — 13210)d0 = 22— + (ﬂo - 13310)t (316)
We now make the following definitions.
k = o — i3$10 (317)
gt?
f(t)= 5 + kt (3.18)




The resulting state transition matrix is

(3.19)

o(t,0)=exp[ 0 ‘f(t)] _ [COsf(t) —sinf(t)]

) 0 || sinf(t) cos f(t)

Note that if we were to stop the expansion right here, we would be deriving an
exact solution to the equations of motion for a completely axisymmetric gyrostat
(i.e. € = 0). Application of the initial conditions to the O(1) system solutions yields

the following result.

10 = 1(0) (3.20)
Ty = z3(0)cos f(t) — z3(0)sin f(¢) (3.21)
Tz = 2(0)sin f(t) + z3(0)cos f(t) (3.22)

We now proceed to the O(¢) system of equations shown here again for conve-

nience.

Ty = « T30%T30
En = —(p—13Z10)Ta1 + 13Z11%30
a1 = (@ —13Ti0)Zn1 — aZ10T20 — 13T11220

Starting with the z;, term

ey = /o  (azs0s30} do (3.23)
[ @ {#x0)25(0) cos? £(0) + (24(0) ~ 24(0)) con f(o)sim f(o)
—9(0)z3(0) sin? f (a)} do (3.24)
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The result, using the symbolic manipulation program Mathematica 2.0 for SPARC
by Wolfram Research Inc. (15), is

_ [k +g) V2/x(k+gt)
Ty = S-——'ﬁ_ bl+C —_\/'g:"“—' b2

- cC k@} by—S [k‘/—EE] by (3.25)

V9 V9
with
k? k? . k?
h = a -8% (;;,-,(0)2 cos-g— — z3(0)? cos; + 2z2(0)z3(0) sin ?)
= af T (—zy0psin & 260 & L
= a 89( z3(0)% sin . + z3(0)* sin 7 + 2z3(0)z3(0) cos .

The Fresnel Sine, denoted by “S”, and Fresnel Cosine, denoted by “C”, are functions
that are defined as (1:300)

Clz) = /o " con («t-;) dt
S(z) = /o " sin (w-t;) dt

Figure 3.1 depicts both of these functions. Note that as ¢ — oo, both functions
asymptotically approach % The Fresnel Sine and Fresnel Cosine can be approxi-

mated using the following functions.

2

z 2

)
)

— gcos

) e
) o

C(z)= %+psin( z

S(z) = % —qsin(

IR IR
o3 ol

x

where

14 .926z
2+ 1.729z + 3.104x2

(3.26)




Figure 3.1. Fresnel Sine and Fresnel Cosine Functions.

1
2 + 4.124z + 3.429z2 + 6.67023

q= (3.27)

These approximations are valid to 2 x 103 for 0 < z < oo (1:302). An important
consideration is the singularity at z = —0.4932 in Eq. 3.27. This inconvenience can

be accommodated by using the following symmetry relations (1:301).

C(-z) = -C(z)
S(-z) = —-S(=)

With z,; determined, we now proceed to the set of coupled differential equations for

z7 and z3;. Eqs. 3.9 and 3.10 form a system that has the form

X = A(t)X + Bu(t) (3.28)




where A(t) is the same as Eq. 3.12, B is the identity matrix and

u(t) = [ FaisTu } (3.29)

—aZioTz0 — 13T11720

This is simply the O(1) system of equations (cf. Eq. 3.11) with a forcing function

u. This system has a solution of the form
t
X(t) = ®(t,0)X(0) + &(t,0) /0 &~ (c)u(o)do (3.30)

The state transition matrix ® is defined by Eq. 3.19. The first term of the solution
must be set to zero since the initial conditions were matched in the O(1) system of
equations. The multiplication of the integrand results in

T3izzy; — 3 8in(2f)zr0a T2 + 1T3a 10 — § co8 (2f)z3a 740

o 'u= (3.31)

—Z3i3211 + § 8in (2f)Z100 T3 — Jz3a 210 — § c08 (2f) 220 210
Recall that f = f(¢) which is defined by Eq. 3.18 and z; are the initial conditions.
The first and third terms in each row of the integrand will produce secular terms,
but the second and fourth terms will not. Integrating each row of Eq. 3.31 and
multiplying the resulting matrix by ® yields the following results (secular terms are
over-bracketed). The terms a; and b; & = 1,2,3,4 are located in Appendix A.

Further, the terms z; and z3 are defined as z2(0) and z3(0) respectively.

e
” —

1 |
Ty = za Tyotzzcos(f) —"i;a i3z3(z3 — 3) cos (f)

2

A

P

1 1 N
+ ° i3z3(z3 — z2) cos (f) cos 2f + 59 otz sin (f)

- %a i3z9(z3 — z3)sin (f) — -41—ga i3z2(z2 — 22) cos (2f) sin (f)
s[RI
+ —\/5 al + Wz a
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V2/7(k +gt) V2/7(k + gt)
S[ i ] a3+C[—T—]-a4

| . | . .

- Eg—a i3z, cos (f) sin (2f) — -2-311 ia3z2z3sin (f) sin (2f) (3.32)

T Sl .,
Ty = - §a tzy0zz cos (f) —Ea 1323(z3 — z3) cos (f)

| 1 —

+ Zza t3zg(z3 — z3) cos (f) cos (2f) + 3 tz10z3sin (f)

L el e ein () L oo — ot eos (2
1” i3z3(z3 — 23)sin (f) + 1° i33(x3 — 3) cos (2f) sin (f)

(ky/2/7 ky/2/x
+ S —\/_T]-buc[—\fg—]-bz

AR+t [Tk e
+ S - 7 b3+C[—T]-M

+ élga i3z3z3 cos (f)sin (2f) — Elga i3z2z2 sin () sin (2f) (3.33)

Notice that there are no secular terms in the z,; soluiion while they do appear in

the z,; and z3; solutions.

3.1 Straightforward Ezpansion Resulls

Because we know that secular terms are present in the solution, we test the
solution on an oblate gyrostat to avoid any problems with instantaneous separa-
trix crossings. Figures 3.2 through 3.5 depict the validity of this solution with
the numerical integration of the equations of motion. The numerical integration
is done using a 4** order Runge-Kutta subroutine in the computer program Mat-
lab 4.0a by the Mathworks Inc. (10). The initial conditions will always be written
at the top of the graph as the “state vector.” The state vector is interpreted as

[x1(0); x2(0); x3(0); 1#(0)]. Further, the x axis is represented as x and is essentially a
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time axis from the beginning to the end of spinup. As can be seen, the solution for
the x, component of angular momentum is very good. However, as the amount of
time required for spinup increases with smaller values of g, the approximate solution
begins to get out of phase with the numerical solution (see Figure 3.3). The x,
component of angular momentum captures the increasing frequency of the spinup
maneuver but, as g decreases the secular terms become dominant and invalidate the
solution. Figure 3.6 and 3.7 depict the maximum error seen throughout spinup for
different ¢sinq or g values. The x3 and x3 components of angular momentum show a
large divergence in error as the spinup times increases. As a result, this approximate
solution is invalid for ¢ < 0.1. The x; component of angular momentum displays
very little error as the spinup time is increased. This is due to the fact that there are
no secular terms in the x, solution. It is interesting to note that the x, approximate
solution does capture the decreasing a:aplitude as spinup time increases. The error
seen in Figure 3.6 is due to the out of phase condition that develops. However, be-
cause the scale of the x; component is so small, (i.e. increments as small as 0.0005),
the error would still be less then one percent even if the approximate solution were
completely out of phase with the numerical solution. For smaller values of g (for
example ¢ = 0.001), the approximate solution does get completely out of phase
with the numerical solution about half way through the spinup maneuver. However,
when g — 1, the approximate solution is back in phase with the numerical solution.
Further, the amplitude error is minimal throughout spinup. With such small error
in the x; component of angular momentum, the cone angle described by Eq. 2.23
is useful at any time during the spinup maneuver. Note that the example in this
analysis began spinup relatively close to the oblate equilibrium point located at the
north pole of the momentum sphere. The region of validity of the x, approximate

solution will be explored further in Chapter 4.




state vector [.9;.30622;.30622:0]
- (3a-.5; 2= 40 (0p=.01; torque=.1

Figure 3.2. Straightforward expansion method approximate solution of the x; com-
ponent of angular momentum of an oblate gyrostat with initial condi-
tions z; = 0.9,z = 3 = 0.30822 and € = 0.01; ¢ =0.1.

e vector={.9:30822;30822,0]
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Figure 3.3. Straightforward expansion method approximate solution of the x; com-
ponent of angular momentum of an oblate gyrostat with initial condi-

tions z; = 0.9,z = z3 = 0.30822 and € = 0.01; g = 0.01.
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Figure 3.4. Straightforward expansion method approximate solution of the x; com-
ponent of angular momentum of an oblate gyrostat with initial condi-
tions z, = 0.9,z = z3 = 0.30822 and ¢ = 0.01; ¢ = 0.1.

sn-vomr-(osomaoeezm
Oblate spitup — 13«- 5; I2=- AQ(Op-Ol

Figure 3.5. Straightforward expansion method approximate solution of the x; com-
ponent of angular momentum of an oblate gyrostat with initial condi-
tions z; = 0.9,z; = z3 = 0.30322 and ¢ = 0.01; g = 0.01.
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Figure 3.6. Maximum error detected in the x, component of angular momentum as

a function of ¢ ;41 (or g) for an oblate gyrostat using the straightforward
expansion method.

Figure 3.7. Maximum error detected in the x2, x3 component of angular momentum

as a function of t4nq (or g) for an oblate gyrostat using the straight-
forward expansion method.
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3.2 Conclusions

The analysis thus far has demonstrated that the straightforward expansion
method provides reasonable results for the small class of oblate gyrostats that have
a near axisymmetric configuration with a very large torque value. However, the
secular terms and the length of the equations in the solution both contribute to
its general failure. The approach did point out the areas with which the solution
needs to address itself. The equations of motion, when numerically integrated, will
produce solutions which have time varying frequency and amplitude. The method
of multiple scales is ideally suited to handle these problems and is the subject of the

next chapter.
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IV. The Method of Multiple Scales

As seen in Chapter 3 and specifically Figure 3.7, the straightforward expansion
method only produces acceptable results for times (or equivalently torque values)
that are very small (large) compared to 1/e. This is an inherent problem with series
expansions or perturbation solutions of nonlinear differential equations. The problem
arises due to the fact that O(e) and higher terms produced by the straightforward
expansion method are proportional to the independent variable, t. These terms,
commonly referred to as secular terms, destroy the fundamental assumption of a
perturbation solution. Specifically, in a series expansion, each successive power of
the small parameter, ¢, has decreasing importance in the series solution. By being
proportional to the independent variable, these terms rapidly become large in relation

to the O(1) term (11:24-25). This result is also known as a nonuniform ezpansion.

The Method of Multiple Scales was developed to overcome this deficiency.
Eq. 3.32 contains the O(¢) term for the x; component of angular momentum in the
straightforward expansion solution. The functional dependence of x; on ¢ and ¢ can

also be written as

xa(t;€) = %a(t, et, €2, - - - 5 €) (4.1)
Or

Xg(t; €) = fz(to, tl, t2’ *tty E) (4‘2)
where the t, are defined as

to=t, ti=et, t;=¢clt (4.3)

Note that the ¢, are different time scales. If ¢ = 315, then variations on ¢g could be
observed on the second hand of a watch. Variations on ¢; could be observed on the
minute hand. Further, variations on ¢; could be observed on the hour hand and so

on (12:122-123). As a result, the functional dependence of x; on a single independent
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variable, t, changes to dependence on to,t),t3,---. To incorporate this dependence

in the solution we use the differential operator

2 a 2 0
ﬁo+e-371+55t—2+--- (4.4)

4
dt
The assumed series solution for x; is now

Xi = I,’o(to, tl, tg, ) + EIil(to, tl, tz, ) + €2zig(to, tl, tg, ) -l+' 0(53); t= 1, 2, 3 (45)

If these relations are substituted into a differential equation and powers of ¢ collected,
they result in a series of partial differential equations as functions of the time scales
t,.. Solutions to these PDE’s involve the determination of functions which cause

secular terms to vanish (2:120-123).

We begin the multiple scales solution approach with the four first order differ-
ential equations that describe the system.

%1 = (ia —is)XaXa (4.6)
X2 = (isx1— p)%s (4.7)
X3 = —(iax1 — p)Xa (4.8)
po=9 (4.9)

This system is subject to the following initial conditions

0]
x(0) = | 9 (4.10)
X3(0)

| #(0) |

Note that x; refers to the total component of angular momentum while z;; refers to

the terms which make up the solution for x;. The small parameter about which we
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want to perturb the system is the difference in the transverse inertias
i2—is=ace (4.11)

where a is O(1). We only use two time scales and seek bounded solutions of the

form
X,‘(to, tl;é‘) = .’t,‘o(to, tl) + E:L'.](to, t;) + Ez:t.'g(to, tl) + 0(83); t= 1,2,3 (4.12)
The fast time “ty” is defined as t while the slow time “t,” is defined as £ t. In order

to incorporate the different time scales, the following differential operator is used.

KA
o, +

d 0
EZ € E (4.13)

In order to insure that angular momentum is conserved, we impose the constraint
x|’ =1,vt>0 (4.14)
Expanding this relation using Eq. 4.12 we see
1 = ||x(to, t1;€)|I* = x - x = ||xo||* + 20 - x; + £? [||x1||2 + 2% - Xz] +--- (4.15)

This imposes an orthogonality condition on the O(c) terms. Plugging Eqs. 4.11, 4.12
and 4.13 into Eqgs. 4.6 through 4.8 and collecting terms of O(¢) yields the following

systems of equations.

0(1) : %’t-:B -0 (4.16)
oz .
?:o = (i3T10 — #)T30 (4.17)
3 .
_at@ = —(isT10 — #)T20 (4.18)
0




(4.19)

Subject to
z.'o(o, 0) = xi(O), i= 1,2,3
lIxoll> =1,V >0
oz oz
O(E) : W:)l = Q Z20Z30 — —3;1[2 (420)
07 . ) a
% = (ia%10 — p)Ta1 + 13TnTa0 — ‘5%’ (4.21)
oz . . a
7;: = —(iaT10 — 4)ZT21 — 13Z11T20 — @ T10T20 — % (4.22)
Subject to
z4(0,0) =0, 1 =1,2,3
Xo-%X =0,Vt>0
Starting with the O(1) system of equations, the z1o term has the solution
tlo(to, tl) = Al(tl) (423)

where A,(t,) is the “constant” of integration. The term “constant” is used to indicate
that although the term has time dependance in ¢, it is constant with respect to t,.
In order to determine the dependence of ¢; on z;9, we must solve the next higher
order of the system of equations, O(c). The z39 and z30 terms are coupled partial
differential equations. Note that u is only a function of the fast time ¢y. This can be
seen by noting that u reflects the energy that is being put into the system. It is the

result of a simple ordinary differential equation and, as a result, has no dependence




on the slow time. Making use of Eq. 4.23, the system of equations can be written as

8::30

-EtT = [isAl(tl)_“(tO)]zl“O(thtl) (424)
%’? = —[iaAi(t1) — u(to)] z20(to, t1) (4.25)

This system can be represented as

0
goxO = B(to, tl)x.o(to, tl) (4.26)
X; = [ 3 ] (4.27)
I3
and the B matrix is
=[ 0 fisA(t2) —u(to)]] w25)
—[2aA(t1) — u(to)] 0

This matrix is very similar to the matrix developed in Chapter 3 using the straight-
forward expansion method. It still satisfies the property of commutativity and so we

make use of the following relation (7:600)
If B(t1)B(ts) = B(t2)B(t:); then (t,7) = exp | ‘Blo)de  (4.29)
and the system of equations has the solution
X = 9(t,0)X0(0, 1) (4.30)

The matrix ®(t,0) is termed the state transition matrix and Xy are the constants

(with respect to to) of integration of the system. The integration of the B matrix is

easily done

‘ . t3 .
./00 (ga + Bo — 23A(t1)) do = ’(’—22 + (ﬂo - z3A(t1)) to (4.31)
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To simplify the equations we make the following definitions.

k= Ho — i3A1(t1) (432)

gtd
flt) = T2+ kto (4.33)

As a result, the state transition matrix is again

8(t,0) = exp 0 —f(t) _ | coe f(to) —sin f(to) (4.34)
flto) 0 sin f(to)  cos f(to)
Finally, the solution to the set of coupled PDE’s (Eqgs. 4.17 and 4.18) is
.’L‘go(to, tl) = Ag(tl) COs f(to) - Aa(tl) sin f(to) (435)
xao(to, tl) = Az(tl) sin f(to) + As(tl) Ccos f(to) (436)

We now proceed to solve the O(¢) system of equations to find the ¢; dependence

in zjo. The O(e) equations are listed here again for convenience.

a.’tu a:':IO

737;- = «Q T20T30 — Wl (4'37)
9o (iyzr0 — w)an + isznzso — 222 (4:38)
9t = (1aT10 — H4)T3 3T11Z30 at .
oz . . i

WT = —(i3T10 — #)T2n1 — 13T11T20 — @ T10T20 — __étho (4.39)

Noting Eq. 4.23, the z,; term can be written

—-_ = _A'l(tl) +a x
[A2(t1) cos f(to) — As(t1)sin f(to)] X
[A2(t1) sin f(to) + As(t1) cos f(to)] (4.40)



It is now implied that the constants of integration A;, ¢ = 1,2, 3 are functions of the
slow time ¢;. Further, the ' now represents the derivative with respect to the slow

time (ie ()’ = 8()/0t,). Integrating this equation yields

V2/7(k+ gt
zu(to, t1) = /Ot{-A'+a TTwldty = —Alt s+ (5 [ /”(\/5 g 0)] by

V2t +gt)] \[
- o[EEs)

+ An(t)
0

(4.41)

2 2 2
h o= o /1 (Agcosf— — Acos & 4 24,45 sin "—)
8g g g g

2 2 2
b = af— (-Agsin!c— + A3 sinf— + 2A3A3 cos k—)
V3 g g g

The Fresnel Sine (S) and Fresnel Cosine (C) functions are as defined in Chapter
3. As can be seen, A] is the only secular term in the solution. In order for z;; to
be bounded as ¢ — oo, we must have Aj(t;) = 0. Further, application of initial

conditions for the O(1) system results in
Ay(t1) = constant = z,(0) (4.42)
We now “redefine” Eqs. 4.23 and 4.32.

Z‘lo(to, tl) = 21(0) (443)
k = po — 13710 (4.44)
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The dependence of the new “constant” of integration, A;;(¢;), cannot be determined

unless we go to the O(e?) system of equations. Finally,
o[ e e

- C[k 7 b—S |k 7 by + An(th) (4.45)

The dependence of z,; on the fast time is shown in the Fresnel Sine/Cosine terms

while its slow time dependence appears in the constants of integration contained in

b, and b,.

We now have a set of coupled PDE’s in the O(¢e) system of equations which

must be solved. The equations are repeated here

Qfﬂ—(iz — p)za + 3Tz _ %
6to_ 3li0 — H)Tan 3711%30 ot
9T | _(iszr0 — W)om — istizao — _ 9
to = 13710 — K4)T21 — 13T11T20 — O T10T20 o,
where
0z20 ' ' .
B, Aj(t1) cos f(to) — Az(t1)sin f(to)
V) ) ,
L = Aylt)sin flto) + Ay(t) cos f(to)
This system of equations can be written as
07
EX; = B(to)xl(to,t1)+0(to,t1) (446)
X; = | ¥ (4.47)
I3;




r

Notice that at this point, the B matrix is only a function of the fast time.

B(to) = 0 (1321(0) — p(to)] (4.48)
~ [i32(0) — u(t) 0
and
u(to’tl) — i3$111‘30 - Alz (o0 ] (f(to)) + As sin (f(to)) (449
—i3%11T20 — @ T10T20 — Ajsin (f(to)) — Ajcos (f(to))

This system has a solution of the form

Az(t)

X(tor ) = 8(1,0)X(0,0) + 8(t,0) [ ‘&1 (r)u(r)dr +
0 Azn(t)

] s

The initial conditions for this system will be implemented after we complete the
derivation of the O(¢) terms. As a result, we are only interested in the particular
solution. Aj and Aa; are the constants of integration resulting from the integra-
tion of the system of PDE’s. Because the B matrix is only dependent on to, the

state transition matrix is exactly the same as that in the O(1) system of equations

(Eq. 4.34). Multiplication of the inverse of the state transition matrix ®~* and the

forcing function matrix u yields the following

_A; + A3i3$11 - ';'Sin (2f(to)).’t1oa Ag + %Aga Ti0—
3 €08 (2f(to))Asax z10
— Ay — Agizzyy + 1sin (2f(to))z10a A3 — JA20 Z10—

% COs (2f(to))Aga 10 )
(4.51)

In order to achieve a uniform expansion, we require that the coeflicients of the secular

(D—lu(tu, tl) =

terms must go to zero. The first, second and fourth terms in each row of the matrix,

when integrated, will produce secular terms. The secular terms form the following




system of PDE’s

—A'z = —(%0 Zio + i3$u)A3 (4.52)
A, = (%a T10 + 13211) Az (4.53)

This system allows us to determine the dependence of A; and Aj on the slow time,
t,, however, the system is extremely complex. First, z,, (Eq. 4.45) contains b, and
b, which are functions of A; and A3. This makes the system of equations nonlinear.
Second, z,; also contains the A;;(¢,) term which is unknown at this time and can
only be determined by solving the O(e?) system of equations. While the prospect
of deriving an approximate solution at this point appears grim, reasonable results
can still be obtained. Note that the system of equations for A; and A3 could easily
be solved if the z,, term were a constant. In order to make this approximation, we
must ignore all time dependence in z;; so that it can be decoupled from the z3;
and r3; system of equations. This approximation requires that the variables A; and
A3 given in b; and b; be given the values of the initial conditions z,(0) and z3(0)
respectively. Further, since the time dependence in z,, is ignored, the A;; term is
also dropped. Figure 4.1 depicts z;, as a function of time for an oblate gyrostat with
a 1 percent difference in transverse inertias and an initial state [0.7,0.4,0.59161,0].
The two curves represent the gyrostat with two different non-dimensional torque
values of 0.01 and 0.1. As can be seen, the z;; function oscillates and asymptotically
approaches a constant value as ¢ — co. By making use of the fact that both the

Fresnel Sine and Fresnel Cosine approach } as ¢t — oo, this value can be determined

_1 Vo V2/x
Tilapproz = 2(cl + C2) -5 [k \/-g- ] a-C [k \/.g. ] C (4.54)

where now
[ k? k? . k?
a = h0)=a ér; (172(0)2 cos 7 £3(0) cos 7 + 22,(0)z3(0) sin —;)
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Figure 4.1. z;, Variation for an oblate gyrostat with initial conditions z, = 0.7,z; =
0.4, z3 = 0.59161 and ¢ = 0.01; g = 0.01.

e = »(0)= a\/Z (—a: (0)? sink—2 + 23(0)? sin L + 22,(0)z3(0) cos E-)
2 = =5 2 g T p 2(0)z3 7

Using this approximation for z,; produces some excellent results. Returning to the
coupled set of PDE’s given by Eqs. 4.52 and 4.53, we have now reduced them to
a constant coefficient coupled set of PDE’s based on the approximation of no slow

time dependence in x;. This system of equations now yields the following result.

Az(t]_) = A2 cos (Ltl) + A3 sin (Ltl) (4.55)
As(t)) = —Azsin(Lt;) + Ascos(Lty) (4.56)
where
1 .
L= (50 T10 + 13T 11approz) (4.57)
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These solutions for A; and Aj as functions of ¢; must now be applied to the O(1)

system of equations. Therefore Eqs. 4.35 and 4.36 now become

zao(to) = [Azcos(Le to) + Assin (Le to)] cos f(to)
— [—Agsin(Le to) + Ascos (Le to)]sin f(to)

zao(to) = [Azcos(Le to) + Assin (Le to)]sin f(to)
+ [—Agzsin(Le to) + Ascos (Le to)] cos f(to)

Further, with these solutions in hand, the secular terms of the ®~'u(to,t;) matrix
(Eq. 4.51) may now be ignored. The integration from 0 to t followed by the multi-

plication of the state transition matrix results in

2 V2
Tn = La \/gz'm {Aacos (kg +kt+gt )C [k /W]

Vi r)" |7
— Ajzcos (k2 + kt + g;’)c _\/2/—1—\(/]‘:;.@]
+ Ajcos (§+kt+%t2)5 k\/\z/_z;]
_ Azcos(,; +kt+g;2)s -M
- AC -k \/5_27] sin (k2 + kt + g;2)
\/2/—1r(k + gt) k? gt?
4+ AC _T ( + kt + 2 )
+ AsS k\/j?] sin (E + kt + %2)
~ A8 \/2_/17(1: + 9t)] ( R+ 22) } +An(t)  (4.58)
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and

Ty = %a \/gzm{A,cos (fgi+kt+gt2) [
)C :\/2/—rf/§+ yt)]
o]
7)s|

— Ajcos

m|‘°

L
2

B
o [V2Imtk + g)
V7

+ AsC k‘/f} sin (’;2 +kt+2 2)

gt?

+ Ajcos + kt +

5+
(B
(&

2
\/2rk+ t 2
~ ac |2 g)] ( +kt+gt)
g 2
k 2/ (k2 gt?
+ A,S sin —+kt+—)
Tl vE ] 2
\/2/1r(k+gt) ( gt’)l
- AS|+¥—— + kt + + Az (1) 4.59
2 . V] p 5 ! a1ty (4.59)

The total solution can now be formed.
X1=Zp+ezn+ 0(52) (460)

In expanded form this is

V2/7(k + gt) V2/7(k + gt)
z:(0) + ¢ {S [—\/j—_] a+C [—ﬁ—] 2

C [7;— CQ—S \/5 ]Cl} +O(€) (461)

X3y =
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The x; approximate solution is as follows.

X2 = T30 + € T + O(e?) (4.62)

In a slightly expanded form this is

1 . . (1 .
X3 = [Az cos ((Ea T1 + 3T11approz)€ t) + Azsin (Ea T1 + 13T 11approz)E t)] X

gt?
L Lkt
cos( 2 + )

) 1 ) ) 1 )
+ [Az sin ((54:1 T1 + 13Z11approz)€ t) — Aasin ((50‘ Zy + 13T 11approz )€ t)] X

2
sin (Q;_ + kt) +¢& zn + O(?) (4.63)

The x5 approximate solution is as follows.

X3 =Tz +€Tn+ 0(52) (464)

1 ) . (1 )
X3 = [Ag cos ((—a T1 + 3T 11approz)€ t) + Azsin (-2-a 1 + t3T11approz )€ t)] X

2

. [gt?
L 4kt

sin ( 5 +k )

. 1 ) . 1 )
+ [—Az sin ((Ea Ty r zazll.,pp,o,)e t) + AaSln ((Ea Ty + 131'11a.ppro.1:)€ t)] X

9t2 2

cos | -+ kt) + € za1 + O(¢*) (4.65)

The solutions used for zz; and z3; are not exact in that we have not solved for
An(t;) and Agi(t1). This would involve solving the O(e?) system of equations which

requires solving the following integrals analytically or approximately.

¢
/0 S(o)cosodo

/(; t C(o)sinodo
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Being unable to accomplish this, we assume this error to be small and proceed.

To determine A; and As, we apply the initial conditions to x; and x,.

x3(0,0) = x5(0) = A, (4.66)
x3(0,0) = x3(0) = A; (4.67)

Earlier we noted that for the O(1) system, the norm of the components of angular
momentum must equal one to satisfy the conservation of angular momentum. The
equations developed for 109, Z30, and z3y do satisfy this condition. Since we have
found z10 to be a constant, however, we note that the sum of squares of the transverse
angular momentum components must also be constant for ¢ > 0. This is essentially
the same result that was found by Sen and Bainum (13). There have been no
limitations on geometry to this point and so this result is valid for near axisymmetric

oblate or prolate configurations.

4.1 Method of Multiple Scales Results

We will investigate the validity of this approximate solution for the three types
of spinup problems described in Chapter 2. Recalling the discussion in section 2.4,
we note that there should not be any complications associated with instantaneous
separatrix crossings for an oblate gyrostat. As seen in Figure 2.3, the instantaneous
separatrices associated with unstable equilibria migrate to the south pole of the
momentum sphere as 4 increases. An oblate trajectory, however, would begin and

stay in the northern hemisphere throughout spinup.

Dual-spin gyrostat dynamics become interesting when the initial condition
starts in the southern hemisphere of the momentum sphere. A perfectly modelled
system would be able to accommodate the non-linearity associated with migration of
the instantaneous separatrices in the southern hemisphere. Recall, however, that by

choosing the difference in transverse inertias to be the small parameter, the system
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of equations that describe the spinup are transformed from a non-linear system to a
sequence of linear systems. As a result, the approximate solution does not contain
any of the separatrices associated with the non-linear system. Since both prolate
spinup and transverse spinup have trajectories that interact with and are influenced
by instantaneous separatrices, we expect to see some degradation in the approximate

solution for these spinup problems.

4.1.1 Oblate Gyrostats. Figures 4.2 through 4.7 compare the approximate
solution versus the solution obtained by a 4** order Runge-Kutta numerical integra-
tion scheme. The gyrostat modelled is oblate with a 1 percent difference in transverse
inertias and an initial state [0.7;0.4;0.59161;0]. The non-dimensional torque value
is ¢ = 0.01. Again, u is the time scale for the beginning of spinup to the end of
spinup. Because the scale of the plots is large, the relative error between each graph

is also presented. The relative error is given by the following equation.

IX; numerical = X, approximatel X 100

Percent Relative Error = x(0)

;t=1,2,3 (4.68)

The assumption of no slow time dependence in the x; component of angular
momentum allowed the derivation of an analytic solution for the terms of the approx-
imate solution. Thus, the result for the x; component is identical to that developed
in the straightforward expansion method. Recalling the results from Chapter 3, even
though this solution does go in and out of phase with the numerical solution, the
error is less than one percent due to the small magnitude of the phase error compared
to the initial value in the x; component. Further, we can now see that the phase
error is caused by ignoring the slow time dependence in this component of angular
momentum. Figures 4.4 through 4.7 depict the x; and x3 components of angular
momentum. Qualitative results are excellent. Although there are two curves in Fig-

ures 4.4 and 4.6, only one is visible. Notice, however, the large error at x ~ 0.05 in
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staw vector {.7:.4..50161,0]
Obilaw S&Hp - m--.s;ilz--.n (cp-m ) Wn-m

................................................................................................

-§. U uu ........................... . ..................................... 4
MWS@I_ Agpprox sol .....
0.2 04 0.6 08 1
mu

Figure 4.2. Numerical vs approximate solution of the x; component of angular mo-
mentum of an oblate gyrostat with initial conditions z, = 0.7, z; = 0.4,
z3 = 0.59161 and € = g = 0.01.

State vectors{.7.4;.501610)

0.12 - Y
13=-5; lz-:-co (ep=.01) forque (g)=.01:

Figure 4.3. Percent relative error of the x, component of angular momentum of an
oblate gyrostat with initial conditions z, = 0.7, 2 = 0.4, 3 = 0.59161
and € = g = 0.01.

4
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state vecior (.7:.4..50161 0}
HUD - 13=-.5; [2n-49 (8p=.01; 10rQUe=.01 :

R E Y

Figure 4.4. Numerical vs approximate solution of the x; component of angular mo-
mentum of an oblate gyrostat with initial conditions z; = 0.7, z; = 0.4,
z3 = 0.59161 and € = g = 0.01.

State vectors{.7:.4;.50161;0]

132-.5 ; idn-AQ (@P=.01} 10rQUS (g)=.0}

0. 4 N ’ ’ Y1
0.1 L.]... 3. s - .. RN . .
0 U A M ) I A
0 0.2 04 0.6 08 1
mu

Figure 4.5. Percent relative error of the x; component of angular momentum of an
oblate gyrostat with initial conditions z;, = 0.7, z3 = 0.4, z3 = 0.59161
and ¢ = g = 0.01.
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state vecwr [.7,.4..50161 0]

T T

Figure 4.6. Numerical vs approximate solution of the x3 component of angular mo-

mentum of an oblate gyrostat with initial conditions z; = 0.7, z3 = 0.4,
z3 = 0.59161 and € = g = 0.01.

State vectors{.7;.4;.50161;0]
0.45, Y v v
3a-.5 ; [2=-.40 (op=.01) torque (g)=.01
o4} : : :

0.35¢ -
2 o0af-++---
s
Eo_as g4
i

o.2t}--1-- 414

#0.1

0.9

0.0

Figure 4.7. Percent relative error of the x3 component of angular momentum of an

oblate gyrostat with initial conditions z, = 0.7, z; = 0.4, z3 = 0.59161
and € = g = 0.01.
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Figures 4.5 and 4.7 during the early portion of the spinup. This “spike” is caused by
the assumption of a constant value for the z,; function in the approximate solution.
Further, the error induced by the assumption manifests itself as phase error. To show
this, observe Figure 4.8 which depicts the amplitude error associated with the spinup
of this gyrostat. We see that the amplitude error is very small in the early portion
of the spinup maneuver. Recalling the derivation of the approximate solution, the
approximation made for z,; impacted the solution for the slow time variation of the
transverse components of angular momentum. The solution to Eqs. 4.52 and 4.53 are
themselves sines and cosines and are the means by which the approximate solution
captures the slowly varying frequency in the transverse components of the system.
The amount of initial phase error is related to how far the gyrostat starts from the
oblate equilibrium point. Figure 4.9 depicts the z,; function for two different oblate
trajectories. One trajectory begins very close to the oblate equilibrium point while
the other begins very far away. As seen, the approximation of the z,, function very
early in the spinup is not as accurate as at the end of the spinup. The approximation
gets worse as the initial conditions get further away from the equilibrium point. The
same phenomena occurs for different values of g (see Figure 4.1). A smaller non-
dimensional torque value results in a larger initial approximation error. Since this
error is incorporated as phase error in the x; and x3 components of the approximate
solution, we can expect higher initial phase error in the approximate solution for
oblate gyrostats that begin spinup further away from the oblate equilibrium point
and/or are torqued by smaller values of g.

These results are for one particular gyrostat which begins spinup at one initial
condition. In order to determine the envelope of the solution for an oblate gyrostat,
we look at three different variables in the equations; initial conditions, torque (g)

values and differences in transverse inertias (¢).

4.1.1.1 Initial Conditions.  Figure 4.10 depicts the maximum error

detected throughout spin up for a gyrostat with ¢ = g = 0.01 starting at various
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State vector={.7;.4;.50161,0)

Amplitude error for the x3 component of angular momentum of an

oblate gyrostat with initial conditions z, = 0.7, z3 = 0.4, z3 = 0.59161

ande=g

Figure 4.8.

0.01.

4.9. z,, For two different initial conditions.

Figure
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Figure 4.10. Maximum error detected as a function of initial conditions for an
oblate gyrostat.

initial conditions (note that the maximum error may have occurred at different
times for each component). The y axis is the x; initial condition with x3 = x3 =
m being the transverse initial conditions. Figure 4.10 shows less than
1 percent error in all three axes for gyrostats that start spinup from a point half
way down the north (oblate) half of the momentum sphere. As the initial condition
progresses further away from the oblate equilibrium point, however, the approximate
solution rapidly begins to diverge. This is caused by the large phase error induced
early in the spinup maneuver by assuming a constant value for the z,; function.
Since the primary interest in the spinup maneuver is the angular momentum at the
end of spinup, Figure 4.11 depicts the maximum error detected during the last 10
percent of the spinup maneuver. As seen, with the initial phase error absent, the
approximate solution is valid to within one percent for the vast majority of initial

conditions.
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Figure 4.11. Maximum error detected in the last 10 percent of spinup as a function
of initial conditions for an oblate gyrostat.

4.1.1.2 Torque Values. The torque value i< directly related to the
validity of the solution through Eq. 2.25. Because the approximate solution has
only incorporated two time scales, the solution is only valid to t = O(e!). The
reason is that for ¢ much greater then O(¢~?), the ¢, variable ceases to be an O(1)
quantity, and as a result, the solution breaks down (11:228-230). This fact limits the
torque values to those which are larger than the asymmetry in the gyrostat. The
unfortunate result is that this solution is unable to model accurately the spinup of
gyrostats with relatively large asymmetry and small spinup torque. This is not to
say, however, that we cannot get good qualitative results. Figures 4.12 and 4.13
illustrate this point. Here we model the same gyrostat as in Figures 4.2 through
4.7, but reduce the torque value to ¢ = 0.001. As can be seen, there is excellent
qualitative accuracy, but a closeup reveals a slight phase error this far into spinup

(see Figure 4.14). Figure 4.15 illustrates the idea graphically.

A second quality associated with the range of validity is the error of the ap-

proximate solution. In general, multiple scalr.s solutions carried out to O(e) have an
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Figure 4.12. Numerical vs approximate solution of the x; component of angular
momentum of an oblate gyrostat with initial conditions z; = 0.7,
zg9 = 0.4, z3 = 0.59161 and € = 0.01;g = 0.001.

error of O(1) when ¢ = O(¢~2). This is because the constants of integration which
develop in the O(1) terms are solved for to O(e) (cf Egs. 4.55 and 4.56). These
constants of integration are of O(1) when ¢t = O(e~?) which fixes the overall error
of the solution. Such an orderly generalization cannot be applied to the approxi-
mate solution developed in this thesis. The approximation made for the z;, function
will cause varying degrees of error as spinup time increases. Further, we employ an
approximation for the Fresnel Sine/Cosine functions which have their own order of

€ITOr.

4.1.1.3 Difference in Transverse Inertias. Perturbation solutions
assume that the small parameter, ¢, is “small.” While an exact definition of “small”
cannot be made, the validity of the solution can be demonstrated for different “small”
values. Figure 4.16 plots the maximum error detected throughout spinup for an
oblate gyrostat with different values of €. This figure shows that we can expect results

with less than 2.4 percent error for an oblate gyrostat that has a 5 percent difference
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Figure 4.13. Numerical vs approximate solution of the x3 component of angular
momentum of an oblate gyrostat with initial conditions z; = 0.7,
z; = 0.4, z3 = 0.59161 and ¢ = 0.01; ¢ = 0.001.

State vector=(.7;.4;.50161;0}
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Figure 4.14. Phase error that develops for an oblate gyrostat with g << e.
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Figure 4.15. Validity of solutions with g << e.

in transverse inertias and approximately 1 percent error for a gyrostat that has a
2 percent difference in transverse inertias. The data in this figure must be viewed
carefully, however, since this gyrostat has started with an initial condition fairly close
to the oblate equilibrium point. We know the error values will increase as the initial
conditions move further from the oblate equilibrium point. In contrast, recall that
the maximum error associated with oblate gyrostats starting spinup further away
from the oblate equilibrium point is caused by the phase error induced early in the
spinup maneuver. The error is considerably less when the comparisons are confined

to the last 10 percent of the spinup maneuver.

4.1.1.4 Cone Angle Approzimations. As discussed in Chapter 2,
the cone (or nutation) angle is the angle formed by the total angular momentum
vector and the symmetry axis of the gyrostat. The equation for this angle is given
by Eq. 2.23. Throughout the analysis for oblate gyrostats, the maximum error

associated with the x; component of angular momentum has been less then one
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Figure 4.16. Maximum error detected as a function of € for an oblate gyrostat with
initial conditions z, = 0.7,z; = 0.4, z3 = 0.59161 ;g = ¢.

percent. From Figure 4.10, this maximum error occurred for an oblate gyrostat
with a one percent difference in transverse inertias but starting just north of the
equator of the momentum sphere. From Figure 4.16, this maximum error occurred
for an oblate gyrostat starting fairly close to the oblate equilibrium point but with
a ten percent difference in transverse inertias. The essential result, however, is
that Eq. 4.61 is a reasonable approximation for near axisymmetric oblate gyrostats
which begin the spinup maneuver with initial conditions in the northern half of the
momentum sphere. Further, this equation can be used to determine the cone angle

at any time during the spinup maneuver.

4.1.2 Prolate Gyrostats. = As mentioned earlier, our selection of the differ-
ence in transverse inertias allows us to solve linear systems of equations for the terms
of the approximate solution. Because the systems of equations are linear, our ap-
proximate solution does not incorporate any of the separatrices associated with the

original nonlinear governing equations. The result is that a phase error will develop
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as the instantaneous separatrices begin to migrate toward the prolate equilibrium

point.

To see this, recall that in a ¢ = 0 system, the separatrix separates different
kinds of motion. In Figure 4.17, we present a cartoon of this concept in the x;, x3
plane. It is clear that the phase of the trajectory inside the separatrix is different than
that on the outside. As u increases, the prolate equilibrium point will go through two
bifurcations as discussed in Chapter 2, and the phase of the trajectories on either side
of the separatrix will change. The net result is that the instantaneous separatrices
in the nonlinear system influence the phase of the trajectories on either side of the
separatrix. Since the approximate solution does not contain any separatrices to
influence the trajectories, we expect a phase error to develop. We also expect the
magnitude of the phase error to be larger when the separatrix is near the equator of

the momentum sphere since the trajectory paths are longer.

Unfortunately, the phase error induced by the instantaneous separatrices is
not the only phase error in the approximate solution. Just as for an oblate gyrostat,
the z,, approximation induces an additional phase error. The combination of these

errors greatly hinders the usefulness of this approximate solution for prolate spinup.

Figures 4.18 through 4.20 illustrate the spinup of a prolate gyrostat. We can
see that the approximate solution begins to get out of phase near u = 0.1. Un-
fortunately, because the approximate solution begins with a relatively large error,
which is compounded by an additional phase error from its inability to model the
instantaneous separatrices, the remainder of the solution is flawed. Notice that the
gyrostat begins spinup fairly close to the prolate equilibrium point (P,). Because
the z,, approximation gets worse as the initial conditions move further from P,, we

do not expect any results better than those shown.

As discussed in Section 2.4, the last bifurcation associated with the instanta-
neous separatrices occurs at u equal to the larger of |¢;| or |i3]. After this point, the

momentum sphere contains only two equilibrium points, both of which are centers.
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Figure 4.17. Cartoon of different trajectory paths in a ¢ = 0 nonlinear system.

4-29




Figure 4.18. Numerical vs approximate solution of the x; component of angular
momentum of a prolate gyrostat with initial conditions x; = 0.9, x3 =
0.30822, x3 = 0.30822 and € = g = 0.01.

state veciors{.9;.30822;.30822:0]
-- i3m, 40' i2=.5 (op=. 01). m— 01

Figure 4.19. Numerical vs approximate solution of the x; component of angular
momentum of a prolate gyrostat with initial conditions x; = 0.9, x; =
0.30822, x3 = 0.30822 and ¢ = g = 0.01.
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Because there are no more instantaneous separatrices to influence the trajectories,
the approximate solution should well approximate the system again after the last
bifurcation occurs. Figures 4.21 through 4.23 illustrate this idea. These graphs
represent the error between the two solutions. We used the numerical results at
u = 0.505 as the initial conditions for the last portion of the spinup. These graphs
also clearly show the early phase error associated with the z,, approximation and
the instantaneous separatrices. The small error seen during the last portion of the
spinup is on the same order as that seen during oblate spinup. Recognize that if we
use the numerical results anywhere from when the solution starts to get out of phase
to u == the larger of [¢3] or |i3] as initial conditions, the approximate solution will not
be as accurate. The reason is that even though the approximate solution is starting
from a correct initial condition, it does not have the correct frequency information

until the effects of the instantaneous separatrices are eliminated.

4.1.8 Transverse Spinup. Transverse spinup should experience the same
problems associated with prolate spinup except the errors will be more pronounced.
Recall that in this case, the trajectory starts near a stable flat spin equilibrium point.
Further, unless the torque value is extremely small, the trajectory will have too much
energy and cross an instantaneous separatrix almost immediately. This will result
in a large phase error between the approximate and numerical solutions. The error
is the composite of the z;, approximation, which is the worst at small u, and the
magnitude of the phase error which is largest near the equator. Figures 4.24 through
4.26 compare the approximate and numerical solutions for a prolate gyrostat starting
at the exact transverse equilibrium point. Figures 4.27 through 4.29 show the same
gyrostat starting spinup just offset from the equilibrium point. In each case, the
instantaneous separatrix crossing occurs almost immediately. This is evidenced by
the fact that the x; and x; components immediately begin to oscillate between -1

and 1.
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state vecior={.9;.30822;.30822.0]

Figure 4.20. Numerical vs approximate solution of the x3 component of angular
momentum of a prolate gyrostat with initial conditions x; = 0.9, x3 =
0.30822, x3 = 0.30822 and € = ¢ = 0.01.
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Figure 4.21. Percent relative error in the x; component of angular momentum of
a prolate gyrostat. Initial conditions are matched at 4 = 0 and u =

0.505.
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State vecor=[.9;.30822;.30822:0]
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Figure 4.22. Percent relative error in the x; component of angular momentum of
a prolate gyrostat. Initial conditions are matched at u = 0 and 4 =

0.505.
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Figure 4.23. Percent relative error in the x3 component of angular momentum of

a prolate gyrostat. Initial conditions are matched at u = 0 and u =
0.505.
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Figure 4.24. Numerical vs approximate solution of the x; component of angular
momentum of a prolate gyrostat during transverse spinup.

Recall that our solution is only valid for ¢ > ¢. In order to make use of
this approximate solution, we would need to model extremely near axisymmetric
gyrostats (¢ = 0.00001) with extremely small torque values. This is not very practical
since, in the limit, it approaches the exact solution for ¢ = g = 0 (i.e. axisymmetric

and no spinup).

4.2 Summary

The approximate solution developed in this chapter essentially employs the
method of multiple scales. The solutions are not complete in that we are unable
to solve the O(e?) system of equations to determine the constants of integration in
the O(¢) system. Further, in order to derive an analytical expression for the O(1)
system, we ignore the slow time dependence in the x; component of angular momen-
tum. While this approximation leads to large phase errors in x;, the magnitude of
the error is small compared to the magnitude of the overall component of angular

momentum. The result is an overall small error in the x; component. The benefit
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Figure 4.25. Numerical vs approximate solution of the x; component of angular
momentum of a prolate gyrostat during transverse spinup.

state vectors{0;0;1:0)

Figure 4.26. Numerical vs approximate solution of the x3 component of angular
momentum of a prolate gyrostat during transverse spinup.
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Figire 4.27. Numerical vs approximate solution of the x; component of angular
momentum of a prolate gyrostat during transverse spinup.

state veciors{.30822;.30822;.9;0]

Figure 4.28. Numerical vs approximate solution of the x; component of angular
momentum of a prolate gyrostat during transverse spinup.
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Figure 4.29. Numerical vs approximate solution of the x3 component of angular
momentum of a prolate gyrostat during transverse spinup.

of the approximation is that it allows the analytical development of the transverse

components of angular momentum.

We compared the approximate solution to the three spinup problems discussed
in Chapter 2. For oblate spinup, the approximate solution provides excellent results.
For oblate gyrostats that begin spinup close to the oblate equilibrium point, the error
in all three components of angular momentum are very small. The reason is that the
influence of the instantaneous separatrices are initially small and remain small as the
spinup maneuver continues. As the initial conditions for the gyrostat get close to
the equator of the momentum sphere, the influence of the instantaneous separatrices
are initially felt and result in a large initial phase error. However, as the spinup
maneuver progresses, the instantaneous separatrices migrate further away from the
trajectory and the error values decrease. Additionally, we discussed the validity of
the approximate solution in terms of time and/or torque value. Because we only
use two time scales, the approximate solution is only valid to t = O(e~!). This

implies that the torque must be greater than the ¢ value to achieve quantitatively
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accurate solutions. However, qualitatively accurate solutions are available out to t =
O(¢™?). Finally, we determined that oblate gyrostats with a one percent difference

in transverse inertias are well approximated.

For prolate spinup, the approximate solution is hindered by phase errors arising
from the z,, approximation and its inability to account for instantaneous separatri-
ces. This results in an “instantaneous separatrix window” in which the approximate
solution is not able to compensate for the frequency change as much as the nonlinear
system. The “window” closes after the last bifurcation occurs at the south pole of
the momentum sphere. Numerical results for the components of angular momentum
at any time after the last bifurcation are valid initial conditions to approximate the

remainder of the spinup.

The approximate solution is not well suited to model transverse spinup. The
torque values required for accurate use of the approximate solution are so small, that

the solution is rendered impractical.
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V. Cylindrical Coordinates

The approximate solution derived in Chapter 4 provides excellent results for
oblate gyrostats with initial conditions that start in the upper half of the momentum
sphere. The approximate solution begins to breakdown, however, due to the phase
error introduced by assuming a constant value of the z;; function. This is most
clearly demonstrated in Figure 4.10. The maximum error that begins to develop
in the transverse components of angular momentum is due to this approximation.
We have noted that this error occurs early in the spinup maneuver where the z;,
approximation is least valid. The idea of tlLis chapter is to derive an approximate

solution that does not suffer this deficiency.

A different approximate solution was developed by Lt Col William P. Baker,
Associate Professor of Mathematics, Air Force Institute of Technology and is included
here for evaluation and completeness. Lt Col Baker observed that the transverse an-
gular momentum components are characterized by constant amplitude but varying
frequency. His idea was to transform the system of equations to cylindrical coor-
dinates and then use the method of multiple scales to derive another approximate

solution.

To develop the solution we proceed as follows. Eqs. 2.18 through 2.20 with the

substitution of ae = i; — i3 reduce to

X3 = QeXzX3 (5.1)
X2 = (ax1 — p)x3 (5.2)
X3 = —(fax1 — p)x; — aex x; (5.3)
p =9 (5.4)
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Let

X1 = X (55)
X3 = pcos¢ (5.6)
X3 = psing (5.7)

where p is the amplitude and ¢ is the phase angle of the system. The system is

subject to the following initial conditions

XI(O) = X](O)
p(0) = y/x3(0) +x3(0)

0 = (55)

To get the system of equations into a form from which we can employ a multiple

scales approach, we start with

— 24 2
P- = Xp+X3

¢ = ta-n-l(X3/X2)

The time derivative of these expressions are

p[i = Xg)fz + X3X‘3 . (58)
= —@ex1X2X3 = —aex;p’ cos dsin ¢ (5.9)
. 1 )stz - X.2X3
- . 5.10
¢ 1+ (x3/x2)? x3 (5.10)
One further manipulation is
pzq'S = X3X2 — Xax3 = —(iax; — u)p® — aex; p® cos? ¢ (5.11)
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Substituting Eqs. 5.6 and 5.7 into Eq. 5.1 and using Eq. 5.9 and 5.11 results in the

following system of equations.

. . Qe .
X1 = aep’cospsing = ?pz sin 2¢

p = —aex,pcosPsing = —%xlpsin 2¢

. , ae Qe

¢ = —(isxqy —u)- —2—x1 -~ —2—x1 cos 2¢

We simplify these equations further by letting

Y =2¢

ae

2

and obtain the following system of equations.
X, = 6plsiny

p = —bxypsiny
'/:' = —2(izxy — p) — 26x; — 26x; cos P

We seek solutions of the form

X1(to,t138) = z10(to,t1) + 6x11(to, t1) + 62212(t0, t1) + O(83)
p(to,t1;8) = polto,t1) + 8pi(to, t1) + 8%pa(to, t1) + O(8%)
P(t; ) = tho(to) + 89i(to) + 82a(to) + O(6°)

(5.12)
(5.13)

(5.14)
(5.15)
(5.16)

(5.17)
(5.18)
(5.19)

Again the fast time “ty” is defined as ¢ while the slow time “t,” is defined as §t. Note

that we make the initial assumption of no slow time dependence in the phase angle.

This assumption will be discussed in the final form of the approximate solution. We
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employ the following differential operator to incorporate the different time scales.
—=— 46 — (5.20)

Further, we still must conserve angular momentum and so we impose the constraint
IxlIP=1,vt>0 (5.21)

This results in the same orthogonality condition on all O(e) terms as seen in the
cartesian solution. Substituting Egs. 5.17 through 5.20 into Eqs. 5.14 through 5.16
and collecting O(1) terms yields

Bt = 0 (5.22)
Opo _

=0 (5.23)

% = —2(i3X10—l‘) (524)
0

This system is subject to the following initial conditions.

216(0,0) = x:(0)
po(0,0) = p(0)
1o(0) 24(0)
lI1%0]|? LVt>0

Note that the constraint refers to the total component of angular momentum. The

solution to the O(1) system with the application of initial conditions is

x10(to, t1) = Ao(t1) = x10(0,0) = Ao(0) = x,(0)

po(to,t1) = po(ti) => po(0,0) = po(0) = p(0)




to .
Yo(te) = /0 (290 + 2p¢ — 2i3x10] do

= gtg +2 (o — iax10) to + 6o
where 8y is defined so that the initial conditions are satisfied.
o = 2tan™" (xa(0)/x2(0))
To simplify the equations, we make the following definitions.

k
f(to)

Ho — 13x1(0)
gt3 + 2kto + 0o = o(to) = f(to)

The O(6) system of equations is

aXu _ 2 . axlO

B, C PoSmYe~ -

om _ 90

YR = —XjoPoSinyp — Bt

3_1#_1 = —2i3X11 - 2)(10 - 2)(10 cos ¢‘o
Oto

subject to the following initial conditions

x11(0,0) = 0

n(0,0) = 0

$(0) = 0
Xo-X; = 0,Vt>0

We solve Eq. 5.29 to find the slow time dependence of A,.

X = /om [po(tl)2 sin (ga2 + 2ko + 00) - Ao'(tl)] do
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(5.25)

(5.26)

(5.27)
(5.28)

(5.29)
(5.30)

(5.31)

(5.32)




= po(tr)? [—2‘4—: {cos (k*/g — 60)S (g(k + yto))
- C (;—\/E(k + gto)) sin (k?/g — 8o)

~ cos (k?*/g — 80) S (j—f(k))

+ C (;/—f(k)) sin (k*/g — 6o) }] — Ao'(t1)to + Ar(ty) (5.33)

The “constant” of integration for this equation is A;(t,). Again, the term “constant”
indicates that the term is constant with respect to t,. The complete form of the
solution is as given, however, to simplify the remainder of the analysis we use the

following definitions.

Colf) = [ cos fdo
-V {cos (k*/g - 6o)C (‘/i(k + gto))

29 gr
+ S (g(k + gto)) sin (k?/g — 6o)
~ cos (k*/g — 8o)C ({——f(k))
- S (g(k)) sin (k?/g — oo)} (5.34)
(5.35)
Sf) = [ sinfdt

= '5\/;; {cos (/g — 60)S (‘g/—f(k + gto))

- C (‘g/—f(k + gto)) sin (k?/g — 6o)
— cos (k/g—8o)S (‘g/—f(k))

C (‘g—(k)) sin (k*/g — oo)} (5.36)




where

flo) = go* +2ko + 6, (5.37)

The Fresnel Sine and Fresnel Cosine functions are as defined in Chapter 3, and
their integrals are developed in detail in Appendix B. Each term in the x;, solution
is bounded with the exception of Agy(t;). In order to have a completely bounded
solution, Aj(¢,) must equal zero and by application of the initial condition

Ag(t1) = constant = x,(0) (5.38)

The resulting solution for xy; is

x11(to, t1) = p3(t1)So(f) + Ar(ta) (5.39)

We now solve Eq. 5.30.
to . 2
p= /0 [~x1(0)po(t1) sin (90° + 2k + 60) — po/(t1)| do (5.40)

This equation is very similar to Eq. 5.32. Again, in order to have bounded solutions,

we must have pj(t;) = 0 and by application of the initial condition

po(t1) = constant = p(0) (5.41)

As a result

pi(to, 1) = —x1(0)p*(0)So(f) + m(ts) (5.42)

Turning our attention to Eq. 5.31, we write it in terms of the Eqs. 5.39 and
5.25 which have been derived.
A

Bty = —2i3p%(0)S,(f) — 2i3A4;(t1) — 2x1(0) — 2x, ) cos f (5.43)




We employ the following relation (see Appendix B).

[ 5. (s(en do

= 1S, (f(1)) + 519- (cos f — cos ) + Sso(f(t))

Thus, the solution is

lte) = —2iss(0) [toso(f) 5 (con  — cont) + £5,(9
- 2to [iaAl(tx) + Xl(O)] - 2X1(0)Ca(f) + ﬂ (544)

The constant of integration is 8 and by application of the initial condition we see
that 3 = 0. With the O(§) system of equations solved, we must determine the nature
of the constants of integrations A,(t;)and p1(¢1). Note that from the orthogonality
condition specified on the O(§) system, we require that

Xo-X1=0,Vt>0
Performing this product results in
x1(0)Ai(t1) + p(0)p1 (1) =0 (5.45)

Therefore, if A;(t;) = 0, we must require p1(t;) = 0. In order to determine A,(t,),

we proceed to the O(6?) system of equations.

dx . Ix
—a—t!f- = 2pop18inhy + pgd)l cos g — a% (5.46)
) . 3
—8-t,2 = —(x10m + X1190) 8in Yo — poX10%1 COS Po — Epl (5.47)
0 1
% = —2i3X12 _ 2X10 —- 2X10 [o0-] ‘l/)o - 2)(101[)1 Ccos ¢0 - 2xlO sin '/)0 (5'48)
0




This system is subject to the following initial conditions.

11| + 2xo - x

x12(0,0) = 0
p2(0,0) = 0
¥2(0) 0

0

Expressing Eq. 5.46 in terms of known functions

Ox12

S = ~20%(0)x1(0)S.(f) sin f + 2p(0)p1 (t1) sin f

- 2i30%(0) {toSo(f) + -21; (cos f — cos bp) + SS,,(f) cos f
~ 20*(0) [iaA1(t1) + x1(0)] tocos f
- 2x1(0)p*(0)C,(f) cos f — Ay/(t1) (5.49)

The solution to Eq. 5.46 is

x12{to, t1)

+

—p*(0)x1(0) [So(H)I* + 20(0)p1 (1) So( f)

2p2’§0) (i3A1(t1) + x1(0)) [sin £ — sin 6]

2kp*(0)
g

(1341(t) + x1(0)) Co(f)
%09 (N + 22 cos o6
2i3p4(0) (10 1

= 3+ 30420

=2 Isi(f)sinf - %"

20,20 + toAr(ts) + Aalt) (5.50)

Every term in the solution is bounded except Aj(t:). Therefore we require that it

be equal to zero and by application of initial conditions we find that A,(¢;) = 0.
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Further, by Eq. 5.45 we find that p(¢;) must also equal zero. However, we show the
same process that we applied to Eq. 5.47 to verify this.

0 ]
3;’3 = "Po(Pg - xlz)S,(f) —Xp18in f
()

+ 2i303x; [toS,,(f) + 515 (cos f — cosBp) + SSo(f) cos f

+ 2x:%potocos f + 2x12paC,(f) cos f — py/(t1) (5.51)
Using the same relations that solved Eq. 5.46 we have the solution
1
palto,tr) = 50(0) [0(0) = (O] IS = :a(O)a(11)Se(f)

+ 2isp(O)x(0) [%So(f) sn  + 5-C,2)

1 2x:2p(0) . . .
= 3 cos OOCo(f)] + XITP() [sin f — sin ]

_ 2x12(()g)p(0)kco(f) + 2x12(g)p(0) [Co(f)]2
— topr/(t1) + p2(th) (5.52)

This solution is the same as that for the x;, solution in that all terms are bounded
except p}(t1). Therefore p,(t1) = 0 and by application of initial conditions, we find
that p1(t;) = 0 as required. With the constants of integration determined, we now

return to Egs. 5.39 and 5.42 and note their final solution.

xu(to,t1) = —p3(0)S,(f) (5.53)
pito,t1) = —x1(0)po(0)S.(f) (5.54)

To summarize, the approximate solution to O(e) using cylindrical coordinates

is as follows.

xi(t) = xi - ZA0)S.(f) +O(e?) (5.55)
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o) = pol0) = G xa(0)p(0)S:(f) + O(e?) (5.56)

() = %—‘l - %{f —ae {igp’(O) [tSo(f) + % (cos f — cos o)
; sSo(f)]+tX1(0)-X1(0)Co(f)}}+0(6’) (5.57)
Finally
aalt) = p(t)cosd(t) (5.58)
xs(t) = p(t)sind(t) (5.59)

Recognize that to O(1), we have satisfied the conservation of angular momen-
tum requirement. In the beginning of the analysis, we made the assumption of no
slow time dependence in the phase angle. Careful analysis of Eqgs. 5.55 through 5.57
reveal some interesting results. Although the equations for x, and p were derived
with the assumption of some slow time dependence, it never shows up in the fi-
nal form of the solution. However, slow time dependence is implicitly found in the
equation for ¢ (Eq. 5.57) even though it was not assumed to be there initially. As
a result, by using cylindrical coordinates, the approximate solution is essentially a

series expansion of the system of equations using a single time scale.

5.1 A Comparison Between the Cartesian and Cylindrical Approzimate Solutions

5.1.1 Oblate Gyrostats.  Figures 5.1 through 5.3 present the relative error
associated with each component of angular momentum for both the cartesian and
cylindrical solutions. The model is a near axisymmetric (¢ = 0.01) oblate gyrostat
with initial state [0.7;0.4.;0.59161;0]. As seen, the solutions for the x; component are
identical. This is expected since the underlying assumptions between the solutions
are the same. Specifically, the initial conditions for x; and x3 are used in both

forms. Further, both solutions use the assumption of no slow time dependence. The
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transverse components show a dramatic difference in the early portion of the spinup
maneuver. The cylindrical solution does not exhibit the “spike” that the cartesian
solution displays. In order to examine this finding in more detail, we compare the
two solutions using the same oblate gyrostat starting at a point further from the
oblate equilibrium point (Figures 5.4 and 5.5). Here we observe the same behavior
early in the spinup, but also notice that the cartesian solution displays less error
than the cylindrical solution towards the end of the spinup maneuver. To explain
this behavior, recall the development of each solution. In the cartesian solution, the
“spike” is the result of phase error caused by the approximation of a constant value
for the z,, function. The cylindrical solutions makes no such approximation and so
there should not be any significant phase error associated with this region of the
spinup. Towards the end of the spinup maneuver, the lower error of the cartesian
solution is the result of the z,; approximation. This illustrates an interesting result
between the two solutions. As noted in Chapter 4, the z,; approximation impacts
the transverse components in that it captures the slowly varying frequency of the
system. The cartesian solution is based on a fast and a slow time scale. The slow
time scale captures the phase or frequency of the system. By assuming the constant
value for the z1; function was Zi1jepproz(t = 00), the frequency adjustment of the
system is incorporated in the transverse components for ¢ — oo. As seen, this
phase correction is not as accurate in the early portion of the spinup, but increases
in accuracy as time increases. The cylindrical solution implicitly incorporates slow
time dependence but it does not benefit from the ¢ — oo phase correction that the
cartesian solution has. As a result, the cylindrical solution has a larger error in the

latter portion of the spinup maneuver.

To illustrate this point in a different light, observe Figure 5.6. Here we compare
the maximum error detected between cartesian and cylindrical solutions in the last
ten percent of spinup for a near axisymmetric (¢ = 0.01) oblate gyrostat starting at

incremental points on the momentum sphere. The initial x; component is the y axis
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Figure 5.1.

Figure 5.2.

State vectora{.7;.4;.59161.0)

0.12 T T r
18=-.5 ; |2a>.49 (8p=.01) TrQUe (g)=.01

Comparison between cartesian and cylindrical equations for percent
relative error of the x; component of angular momentum of an oblate
gyrostat with initial conditions x; = 0.7,x, = 0.4,x3 = 0.59161 and € =
g = 0.01.

State vectors{.7:.4;.50161,0}
0.7

{3m-5; l2--49 (op-.o1jrtaqm (g)-.ofs

% Relative Error in x2

Comparison between cartesian and cylindrical equations for percent
relative error of the x; component of angular momentum of an oblate
gyrostat with initial conditions x; = 0.7,x2 = 0.4,x3 = 0.59161 and € =
g = 0.01.
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Figure 5.3.

Figure 5.4.

State vectors{.7;.4;.501610)
13=-.5 ;3!’2--.40 (.p-.O'T) torque (ﬂ)-zﬂ“

.......................... i Gotrdiaiag s
Cylindrical Coordinates _;_._.

.....................................................

)
PR ¥ O .. \ it |
YL E: R
L WS AT
"‘ft':"h""‘."f"i." .Ii.i-!-».‘.,(.lq..‘i. Y -u!
TN AR TR H R '-‘},‘-!9
SRS KA ERIAL)
04 o
mu

Comparison between cartesian and cylindrical equations for percent
relative error of the x3 component of angular momentum of an oblate
gyrostat with initial conditions x; = 0.7,x3 = 0.4,x3 = 0.59161 and &£ =
g = 0.01.

Stae vectors{.4;.64807;.64807:0)
° r\ |s-::9 1 12=.5 (o;'.:.on torque (ci.m

Comparison between cartesian and cylindrical equations for percent rel-
ative error of the x; component of angular momentum of an oblate gyro-
stat with initial conditions x; = 0.4, x; = 0.64807,x3 = 0.64807 and € =
g = 0.01.
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Stawe vecior={.4;.64807..64807,0)

25 : : :
sa-u 112=.5 (ep=.D1) torque (9)+.01

Figure 5.5. Comparison between cartesian and cylindrical equations for percent rel-
ative error of the x3 component of angular momentum of an oblate gyro-
stat with initial conditions x; = 0.4, x; = 0.64807,x3 = 0.64807 and € =
g = 0.01.

while the initial x; and x3 components are x; = x3 = /(1 — x?)/2. The increased

accuracy of the ¢ — oo phase approximation in the cartesian solution is clearly seen.

5.1.2 Prolate Gyrostats. Observation of the early portion of spinup in
Figures 5.4 through 5.5 leads us to believe that the cylindrical solution is better
equipped to approximate prolate spinup than the cartesian solution. Because the
cylindrical solution is not hampered by a relatively large phase error in the early
portion of the spinup maneuver, we expect better performance in the region near

the instantaneous separatrices.

Figures 5.7 through 5.9 compare the numerical, cylindrical and cartesian solu-
tions for spinup of a prolate gyrostat. Here we see the large influence of the error
made by the z,; approximation in the cartesian solution. In essence, the cartesian

solution starts out with the wrong information and the solutions keeps getting worse.
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Figure 5.6. Comparison between cartesian and cylindrical equations of maximum
error detected in the last ten percent of spin up as a function of initial
conditions for an oblate gyrostat.

The cylindrical solution, however, approximates the numerical results very closely in
the early portion of the spinup. There is still the small phase error that occurs at
the point were the instantaneous separatrix crossing really does occur. Remember
that both solutions are derived from linear systems that approximate the nonlinear
governing equations. The total absence of a separatrix in either approximate solu-
tion is the cause of the phase error that develops when the approximate solutions
attempt to model the governing nonlinear equations. Figures 5.10 through 5.12 illus-
trate the phase error in the cylindrical solution induced by inaccurate modelling of
an instantaneous separatrix crossing. While excellent qualitative results are evident
in Figures 5.7 through 5.9, the phase error at the instantaneous separatrix crossing

propagates the error in the solution through out the remainder of the spinup.

5.1.3 Transverse Spinup. Figures 5.13 through 5.15 compare both multiple
scales solutions with numerical results for the transverse spinup of a prolate gyrostat.

The initial conditions are slightly offset from the stable flat spin equilibrium point.
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o4 state vector [.4:.64807;.64807.0}
Y T Y T

Prola® Spin-up -- 3= 49; 2=.5 (8fk=.01); 10rques;01

Figure 5.7. Numerical vs cylindrical and cartesian coordinate approximate solution
of the x; component of angular momentum of a prolate gyrostat with
initial conditions x; = 0.4, x; = 0.64807, x3 = 0.64807 and ¢ = g = 0.01

state vector [.4;.64807;.64807;0)

EETTRINEY PHY "OPPPINY

Figure 5.8. Numerical vs cylindrical and cartesian coordinate approximate solution
of the x2 component of angular momentum of a prolate gyrostat with
initial conditions x; = 0.4, x; = 0.64807, x3 = 0.64807 and ¢ = ¢ = 0.01
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siate vecior [4; .uao7..uao7;ol

Figure 5.9. Numerical vs cylindrical and cartesian coordinate approximate solution
of the x3 component of angular momentum of a prolate gyrostat with
initial conditions x, = 0.4, x = 0.64807, x3 = 0.64807 and ¢ = g = 0.01

State vectors{.4;.64807;.64807:0}
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Figure 5.10. Percent relative error of the x; component of angular momentum of
a prolate gyrostat using cylindrical coordinates with initial conditions
zy = 0.7, 23 = 0.4, z3 = 0.59161 and ¢ = ¢ = 0.01
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Percent relative error of the x; component of angular momentum of
a prolate gyrostat using cylindrical coordinates with initial conditions
71 =0.7, 22 = 0.4, 23 = 0.59161 and ¢ = ¢ = 0.01

Figure 5.11.

State w-‘.4;.m7;.w7;0]

.-....-............--....-..........._ ......................................
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-

Figure 5.12. Percent relative error of the x; component of angular momentum of
a prolate gyrostat using cylindrical coordinates with initial conditions

z,=0.7, 2, = 0.4, 3 = 0.59161 and € = g = 0.01
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state vector [.30822;. M'.D:ol

Figure 5.13. Numerical vs cylindrical and cartesian coordinate approximate solu-
tion of the x; component of angular momentum of a prolate gyrostat
during transverse spinup.

The significant increase in accuracy during the early portion of the spinup for the
cylindrical solution is evident. The reason for the improved accuracy is the same
as seen during prolate spinup. The cylindrical solution is not hampered by a larger
error early in the spinup. However, the essential result is the same as in the cartesian
solution. Extremely small torque values (which implies extremely small & values) are

required to keep the trajectory near the stable flat spin equilibrium point.

5.2 Summary

The cylindrical coordinate multiple scales solution developed by Lt Col Baker
provides excellent results. When used to model oblate gyrostats, the approximate
solution is much more accurate in the early portion of the spinup maneuver. This is
due to the fact that the cylindrical solution is not dependent on the z,; approxima-

tion that the cartesian solution has. An interesting result, however, is that this same
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; state vector {.30822;.30822;.9;0}

Figure 5.14. Numerical vs cylindrical and cartesian coordinate approximate solu-

tion of the x; component of angular momentum of a prolate gyrostat
during transverse spinup.
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Figure 5.15. Numerical vs cylindrical and cartesian coordinate approximate solu-

tion of the x3 component of angular momentum of a prolate gyrostat
during transverse spinup.
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z;) approximation provides better results for oblate gyrostats in the latter portion

of the spinup maneuver.

The cylindrical solution does have superior performance when modelling pro-
late gyrostats. While the solution is still not able to model an instantaneous sep-
aratrix crossing accurately, it does provide excellent qualitative information for the
spinup maneuver. Further, we expect that spinup which begins closer to the prolate

equilibrium point results in more accurate approximations.

Finally, both the cartesian and cylindrical solutions prove to be inadequate
when modelling transverse spinup. The extremely small torque values required ren-

der the solution impractical.
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VI. Conclusions and Recommendations

6.1 Conclusions

Two approximate solutions for the spinup of a near axisymmetric gyrostat us-
ing the method of multiple scales were derived. The difference in transverse inertias
was chosen as the small parameter. This selection had the fortunate property of
transforming the system of equations that described the spinup from a nonlinear
system to a series of linear systems. The first solution, derived from cartesian co-
ordinates, incorporated the use of two different time scales to capture the slowly
varying frequency of the system. To derive the solutions, an approximation had
to be made for the O(¢) term of the x; component of angular momentum. This
approximation induced a large phase error in the transverse components during the
first ten percent of spinup but had the effect of reducing phase error in the last ten
percent of spinup. The solution was compared to the results of numerical integration
for oblate and prolate configurations. Further, the solution was compared for the
flat spin recovery of a prolate gyrostat. Excellent resuits were obtained for oblate
configurations. When we confined our error analysis to the last ten percent of the
spinup maneuver, we found less then one percent error in all three components of
angular momentum. This result applied to gyrostats with a one percent difference
in transverse inertias and initial conditions in the northern half of the momentum

sphere.

The results for prolate configurations were hampered by the extremely non-
linear nature of prolate spinup trajectories. Because the approximate solution was
developed from a series of linear systems, the approximation breaks down in regions
where the trajectory is really influenced by the instantaneous separatrices associated
with prolate spinup. It was found, however, that if the solution of the numerical
integration at a point in time after the last bifurcation on the momentum sphere

were used, reasonable results could still be obtained for the remainder of spinup.
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Finally, the transverse spinup of a prolate gyrostat was shown to be completely in-
adequate. The trajectory for the spinup began near a stable flat spin center and
almost immediately crossed an instantaneous separatrix due to an excessively large
torque value. Reducing the torque value to an acceptably small value would require

a truly axisymmetric gyrostat.

A second multiple scales solution was derived by Lt Col William P. Baker, As-
sociate Professor of Mathematics, United States Air Force Institute of Technology.
Lt Col Baker surmised that by transforming the governing equations to cylindri-
cal coordinates, a solution could be derived that did not have such a large phase
error early in the spinup maneuver. In its final form, the cylindrical solution did
not have an explicit slow time dependence, but did have the slow time dependence
show up implicitly in the phase equation. A comparison between the cartesian and
cylindrical solutions for oblate gyrostats produced two interesting findings. In the
early portion of the spinup, the cylindrical solution proved far superior to the carte-
sian solution. The reason was that the cylindrical solution was not hampered by
any approximations in its derivation. However, in the final portion of the spinup,
the cartesian solutions phase correction at ¢ = co proved more accurate than the

cylindrical solution.

The cylindrical solution was much better at modelling prolate spinup than
the cartesian solution. By not having the initial phase error induced by the z;;
approximation, the cylindrical solution was better at modelling the trajectory as the
instantaneous separatrices approached. However, the solution was still not able to

accurately model the instantaneous separatrix crossing.

6.2 Recommendations

There are three areas in which further study is warranted.

1). The approximate solutions developed in this thesis were only derived to

approximately O(e). The term “approximately” is used because we ignored some of
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the constants of integration in both the cartesian and cylindrical solutions. Addi-
tionally, the O(¢) expansion limits the amount of torque that might be applied to
the system. If more accurate, or much smaller torque values are desired, the sys-
tem of equations must be extended to O(e?). This will require either an analytic or

approximate solution to the following integrals.

/ S,(o) cos odo
/Co(a) sin odo

2). For prolate configurations, the actual trajectories lie in regions of the
momentum sphere influenced by instantaneous separatrices. If the initial conditions
start fairly close to the prolate equilibrium point, the trajectory encounters smaller
phase error at the separatrix crossing. A matched asymptotic expansion might be

able to correct the approximate solution in this region.

3). The approximate solution derived in this thesis is for a near axisymmetric
gyrostat. Analysis of the solutions indicated that reasonable results could be achieved
for a gyrostat with a two percent difference in transverse inertias. In order to expand
the range of asymmetry further, an alternate technique will have to be used on the

nonlinear system of equations.
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Appendiz A. Straightforward Ezpansion Method Solution Terms

The following terms are to be used in Eqs. 3.32 and 3.33 for the approximate
solution using the straightforward expansion method. Overbracketed terms are sec-

ular.
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T et

T zmx3cos( )sm(f)

_ gﬁa iakyFaaz cos (" )sin(f)

.

- -z-aiB z

7 3 tz,73 cos (k?z) sin (5
- —\;—g_a \/18T T10228in (kz) sin (f)

+ ;.31/—201 isk ;zz:ca sin (k ) sin (f)

+ :——a 33\/—- tz,zs sin ( ) sin (f )

- g:ﬂa iak Szgsm (lc ) sin (f)
1 WG
- %a 3 8ta:3 sin ( ) sin ( f) (A.6)
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et (£ et
 Freen(EJn

1 k?
g3/2° isk ngzgcos ( . ) cos (f)

—-—a \/fx,oz, cos (f) sin (—i)

93/2a isk z,zacos(f) sin (,::)

%a i3\/gtzg cos (f)‘ X

[—zg cos (E) + z3 cos (-’f—) — 2z3z3sin (k—z)]
9 9 g
2
—\%a ‘/gzmzz cos (%) sin (f)
g:/ a izk 8z§zacos (kz) sin (f)
g:'na isk 3 gcos (!c__) sin (f)

\/_ zwzasm( )sln(f)

93/2a i3k 1223813 (k ) sin (f)

az3‘/_tz3x
[.1: cos( )—z’ os(-k—z-)+2 T3 8i (E)]s (f)
2 g 3C P T2T3 8in P 1

e ()i
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2
g'az/'z'a isk %zgza cos (%) cos (f)

g_j.,_,a isky[ 23 cos (f) sin (";)
i—ga \/gzmza cos (f) sin (Egj)

2
g—-al/—za tak %zzzg cos (f)sin (1;_)

”

T * N
-\/—ja :3\/;8_&2 cos (f) x

[ 2z423 cos (kz) + z3sin (l::) — z3sin (‘l:;')]
Lo fGowescos (£)sm ()

yana i3k ngzacos (k ) sin (f)

~¢l_'g'a ;zmz‘g sin (kz) sin (f)

2
’ng/ia isk 58-1:32:3 sin (%) sin (f)

.y_:}ﬁa isk :z:33 sin (kz) sin (f)

~

1 .A x
%a 13‘/ Stzs X
P) .(P) .(P)].
2z,z3c08 | — | — z3sin | — ) + z3sin | — } | sin
[ 2Z3 (g 2 g 3 g (f)
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Appendiz B. Fresnel Function Integrals

The majority of equations derived in this thesis were obtained using the sym-
bolic manipulation program, Mathematica 2.0 for SPARC by Wolfram Research Inc.
(15). This program was able to solve some of the integrals that involved the Fresnel
Sine and Fresnel Cosine functions. However, in the cylindrical coordinate derivation,
the program was not able to solve many of the equations and so they were solved
by Lt Col William P. Baker, Associate Professor of Mathematics, United States
Air Force Institute of Technology. These derivations are included here in full as a

reference.

We begin with the basic definition of Fresnel Sine (S) and Fresnel Cosine (C)
functions (1:300)

C(z)= [; cos (r—';)dt
S(z)= [y sin (r%)dt

1) The first integral is a slightly more complex cosine function.

/0‘008 (9 + 2ko)do = /o'cos [(ﬁa + s)z - E’.] do

9

Using a simple trigonometric identity

/t ( +k)’ k’.(\/.. k)’.k*d
= cos o+ — cos — + sin o+ - sin — } ao
0 Ve g g I g 9
We now employ a change of variables. Let
2
v = Sl
,2
dv = Egda
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The resulting integral is

Lgt+k) [ T, k?
= cos (-—u ) cos — + sm sm — du
\/-};k 2 g

which has the solution

T k? kz]
= ,/=— |C(v)cos — + S(v)sin — B.1
J%[U ROl (B.1)
Using a similar process we find that
RATIVAACOL)
sin (go? + 2ka do = [S’ v) cos — —C(v)sin —] B.2
[ sin ( /st ) 7y (B.2)

2) The second integral is the product of a Fresnel cosine and a cosine function.

faummwmw (B.3)

As in Chapter 5, we define the following terms

Colf) = [ cos fdt
&m=£mﬁt

where
f=gt*+2kt + 6, (B.4)

Note:

£5.f) = sin ()
£0f) = con (1)
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S ——

To solve the integral we employ the integration by parts technique. let

u = Co (f(t))
du = cos f(t)dt
= [ udu = 7| =S (G (O] (B.5)
Using a similar process we find
[5. (@) sin f(o)do = 5[5, (SO (8.6)

3) The third integral is a complicated Fresnel cosine function.
t
[ €. (90* + 2k0) do
0
Using the definition of a Fresnel cosine we have

= /0 t _/0 t cos (_qa2 + 2ka)dads

Changing the order of integration results in

i

./; t / t cos (g¢72 + 2ka) dsdo

/o ‘ (t — @) cos (_qa2 + 2ka) do

il

Now we add and subtract the same term

= t/ot cos (g¢72 + 2ka)da - % /4: (290 + 2k) cos (g02 + 2ka)da

+ z—:/: cos (ga'2 + 2ka)da




The resulting solution is

= tC, (gt* + 2kt) — % sin (gt? + 2kt) + Sc,, (9t + 2kt)

Using a similar process we find

(B.7)

/0 'S, (9% + 2ka) do = tS, (gt + 2kt) +-;; [cos (gt? + 2kt) ~ 1] + ss., (gt* + 2kt)

(B.8)

4) The fourth integral involves the product of the function and the variable of inte-

gration.

/ " 0 cos (f(o))do = / "0 cos (g0 + 2k + o) do

Again, we add and subtract the same term

= o~ [ (200 +2k) cos (g0 + 2k + 85)do
- 29-/0 g c g 0

t
- 5 [) cos (ga2 + 2ko + 0o)da

The solution to the integral is

| S . k

=32 [sin f(t) — sin fo] - ;Co (f(1)
Using a similar process we find
[ osin(F(o))da = —- [cos () ~ cose] = =5, (1)
| osin(f(g))do = %9 cos o 3>

5) The fifth integral is the cosine function squared.

t 2 _ l t
/ocos fdo = 2/0 (1 + cos 2f] do

t 1
=3 + '2‘00(2f)

(B.9)

(B.10)

(B.11)
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6) The sixth integral is the product of the variable of integration, a Fresnel sine

function and a cosine function.

/o (290 + 2k) S,(f) cos f] do

We employ the integration by parts technique. Let

v = S,(f)
dv (290 + 2k) do

This results in
t
= S,(f)sin fI\, - /o sin? fdo

Using a trigonometric relation, we have the solution

= Su(f)sinf = 5t + 3C(2)

(B.13)
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